X
你好,欢迎来到仪多多。请登录 免费注册
仪器交易网
0我的购物车 >
购物车中还没有商品,赶紧选购吧!

最新文章更多>>

机器视觉表面缺陷检测技术的主要问题

时间:2024-01-08    来源:    作者:仪多多     

表面缺陷是工业产品生产中不可避免的问题,其会对产品的美观度、舒适度和使用性能等都会带来不良影响,如果不及时发现处理,将会影响产品的外观质量及性能,所以生产企业需要对产品的表面缺陷进行检测以便及时发现并加以控制。

机器视觉检测方法可以很大程度上克服人工检测方法的抽检率低、准确性不高、实时性差、效率低、劳动强度大等弊端,在现代工业中得到越来越广泛的研究和应用。

一、表面缺陷检测方法比较

产品表面缺陷检测方法主要可以分为以下三种:

第一种是人工检测法,这种方法不仅成本高,而且在对微小缺陷进行判别时,难以达到所需要的精度和速度,人工检测法还存在劳动强度大、检测标准一致性差等缺点。

第二种是机械装置接触检测法,这种方法虽然在质量上能满足生产的需要,但存在检测设备价格高、灵活性差、速度慢等缺点。

第三种是机器视觉检测法,即利用图像处理和分析对产品可能存在的缺陷进行检测,这种方法采用非接触的工作方式,安装灵活,测量精度和速度都比较高。同一台机器视觉检测设备可以实现对不同产品的多参数检测,为企业节约大笔设备开支。

基于机器视觉的缺陷检测方法的比较如表1所示,包括各种方法的主流分类(检测)模型、优缺点对比。

 

机器视觉检测相对于人工检测,可实现在线高速检测,可以保证产品检测的一致性、高效性、稳定性,对于数据的抓取和分析更加方便,可在危险、恶劣的环境下工作等。为此,检测技术由效率和精度较低的人工检测逐步转变为利用机械仪器或者更高级别的机器视觉进行检测,这是未来检测技术的发展趋势。

 

二、机器视觉系统中的缺陷检测技术

如划痕检测是工业产品外观检测的一部分,是常规的产品表面缺陷检测。与划痕检测类似的是裂纹检测,多为已使用的零部件的品质检测。

利用机器视觉进行划痕检测的基本过程分为两个步骤:

① 检测产品表面是否存在划痕。

② 对产品表面划痕进行提取。

工业产品的图像大多表面光滑,灰度变化均匀,缺乏纹理特征,划痕部分和周围的正常部分相比要暗一些(划痕部分的灰度值偏小)。在这种情况下进行划痕检测时,一般使用基于统计的灰度特征或阈值分割法将划痕部分标记出来。

而有些图像的灰度值变化较小,对比度并不明显,划痕部分和正常部分相比,缺乏明显的特征,不能采用固定的阈值分割法将划痕部分标记出来。这时需要采用阈值和形状特征相结合的方法对划痕部分进行标记。

 

因此,把产品表面的划痕分为以下三类:

1、易辨认划痕。

标记方法:选择较小的阈值将划痕部分标记出来。

2、整幅图像的灰度变化均匀,划痕部分的灰度值变化并不明显。

标记方法:对原图像进行均值滤波,得到较平滑的图像,并与原图相减,当其差的绝对值大于阈值时,就将其置为目标图像,去掉面积较小的部分,剩下的目标图像即可标记为划痕。

3、划痕各部分的灰度差异较大,形状通常为长条形,有漏检情况。

标记方法:采用阈值和形状特征相结合的方法对划痕部分进行标记。

三、主要的问题与难点

基于机器视觉的表面缺陷检测将是未来研究和发展的主要方向,目前,基于机器视觉的表面缺陷检测理论研究和实际应用等环节均有可喜的成果,但仍存在以下主要的问题和难点:

1、受环境、光照、生产工艺和噪声等多重因素影响,检测系统的信噪比一般较低,微弱信号难以检出或不能与噪声有效区分。如何构建稳定、可靠、鲁棒的检测系统,以适应光照变化、噪声以及其他外界不良环境的干扰,是要解决的问题之一。

2、由于检测对象多样,表面缺陷种类繁多、形态多样、背景复杂,对于众多缺陷类型产生的机理以及其外在表现形式之间的关系尚不明确,致使对缺陷的描述不充分,缺陷的特征提取有效性不高,缺陷目标分割困难;同时,很难找到“标准”图像作为参照,这给缺陷的检测和分类带来困难,造成识别率尚有待提高。

3、机器视觉表面缺陷检测,特别是在线检测,其特点是数据量庞大、冗余信息多、特征空间维度高,同时考虑到真正的机器视觉面对的对象和问题的多样性,从海量数据中提取有限缺陷信息的算法能力不足,实时性不高。

4、与机器视觉表面缺陷检测密切相关的人工智能理论虽然得到了很大的发展,但如何模拟人类大脑的信息处理功能去构建智能机器视觉系统还需要理论上的进一步研究,如何更好地基于生物视觉认识、指导机器视觉进行检测也是研究的难点之一。

5、从机器视觉表面缺陷检测的准确性方面来看,尽管一系列优秀的算法不断出现,但在实际应用中其准确率仍然与实际应用的需求尚有一定差距,如何解决准确识别与模糊特征之间、实时性与准确性之间的矛盾仍然是目前的难点。




上一篇:公路工程:沥青透层、粘层、封层...

下一篇:智能化服务,专家支持,仪多多助...

  • 手机多多
  • 官方微信订阅号
商品已成功加入购物车!