涡街流量计,它的出现使得很多的行业都能够较快的发展,较好的为我们的生活服务。
虽然对于大多数的人们来说,可能每天都要接触流量计,但是对于流量计的设计原理的话,很多的小伙伴们都是不知道的,为了能够让更多的人们知道流量计的设计原理,现在我就给大家简单的介绍一下。
其实,对于涡街流量计来说,它的设计原理是相对比较复杂的,但是主要是根据卡门原理进行测量一些气体的各种各样体积流量。
它采用的是zui为先进差动技术,而且还配合了隔离等相关的措施,具有较好的抗震性作用,是非常不错的一种产品。
它在各行各业都被广泛的使用着,对各行各业的发展起到了很好的促进作用。
涡街流量计优势:
1、新一代智能化涡街流量计,具有精度高、抗振动、抗干扰、维护方便的特点,适合于各种使用蒸汽、气体工况下的流量计量。
2、涡街流量传感器和流量显示仪及补偿方式合称为涡街流量计。涡街流量计则为涡街流量计的典型代表。
3、涡街流量传感器是利用卡门涡街原理和现代电子技术而设计制造的一种具有高度可靠性、优良的技术性能指标、良好的介质适应性和通用性的新型流量仪表。
总而言之,对于涡街流量计的设计原理的话还有很多,小伙伴们可以通过一些网络渠道,或者查阅相关的书本进行学习,进而学到更多的相关原理,保证在使用的过程当中不会出现任何的问题。
只要小伙伴们努力的去学习相关的知识,相信能够起到很大的帮助的。
涡街流量计的选用要结合工艺介质的特点、流量计的性能、经济性、安装及环境等方面来考虑,一般专业人员都可以做到。本文中重点说明几点需要特别注意的问题。
1)根据抗管道和流体振动情况选择
涡街流量计是根据在流体管道中设置阻力体来产生漩涡,检测漩涡的频率来测流量的。在工业生产中,振动是普遍存在和不可避免的,一般的工业振动频率大都在几赫到几千赫,涡街流量计的漩涡频率正好落在这个范围之内,如果安装涡街流量计的管道和流体发生振动,势必对涡街流量计的测量造成影响,所以涡街流量计必须有抗振补偿功能。
常用的涡街流量计有电容式、压电应力式、超声波式等种类,目前市场上这几种都有着较好的抗振能力,其中电容式、压电应力式只能抗二维震动,即对振动方向在纵向(顺流向)或与漩涡发生体轴线平行的方向振动,具有抗振能力,基本可以消除,但对抗横向(与漩涡升力方向一致)振动能力很弱,而超声波式具有抗三维振动能力。因此在一般场合,振动加速度小于1g,振动频率小于500Hz、振幅小于2.1mm(用手摸有较强烈的振感,有握不住的感觉),三种流量计都可以满足要求,但在振动特别强烈的场合,或有升力方向振动的场合,选用超声波流量计比较合适。
2)根据所测介质情况选择
一般涡街流量计可以测量气体、液体和蒸汽介质的流量,但由于各种介质特性千差万别,传感器结构形式各种各样,其适应性也不同。压电应力式和电容式涡街流量计应用范围较广,但在测低密度和低流速气体流量时,由于受到漩涡能量的限制,发生漩涡不强烈信号低,电容式涡街流量计由于存在两个导压孔,不易测量赃物介质;超声波式虽然能测量低流速介质流量,但对脉动较敏感;具体情况如下:
2.1)对于介质中含有粉尘和固体颗粒或悬浮物的流体不宜选用电容涡街流量计。因为在漩涡发生体两侧有两个导压小孔,容易堵塞,使输出信号为零。凡是带有导压小孔的其它类型的流量计和电容流量计具有相似的情况。
2.2)超声波涡街流量计虽然抗振性能强,但使用温度范围不如电容式和压电应力式宽。一般压电式涡街流量计测温上限不超过300℃。超过时压电元件绝缘下降,输出信号变小,抗干扰能力大大降低;电容式涡街流量计的测温上限达400℃,具有较好的耐高温性能;而超声波式涡街流量计测温上限不超过200℃,如果被测流量介质温度超过此范围,则可能损坏超声波探头。另外,超声波涡街流量计不宜在含有过多气泡的液体或含杂质的液体中测量,因为有过多气泡的液体,超声波不易穿过,可能造成测量上的困难甚至不可能测量。液体中含有杂质会对超声波起到慢反射或吸收的作用,影响测量的准确性。
3)涡街流量计的选择不仅要考虑被测介质的温度,还要考虑检修吹扫介质的温度
涡街流量计的被测介质温度可能是常温,但是在检修时需要用蒸汽吹扫管线,蒸汽的温度在150℃以上,如果选型时只考虑到介质的温度而选择适用温度范围低的涡街流量计,在检修吹扫管线时,就有可能损坏敏感元件。
4)在使用状态下,如果被测介质有明显的脉动,则不宜选择超声波涡街流量计
因为超声波涡街流量计对小流量敏感度很高,在这种场合使用,会使输出信号不稳定甚至失真。
5)在液体中混有大量气泡的场合,不宜选用各种涡街流量计
涡街流量计是虚用流体振荡原理来测量流量的,流体在管道中经过涡街流量交送器时,在三角柱的旋涡发生体后上下交替产生正比于流速的两列旋遇,能涡的释放频率与流过旋涡发生体的流体平均速度及能满发生体特征宽度有关,可用下式表示:
F=Shr/d
式中: f伪旋祸的释放频率,Hz; v为流过旋涡发生体的流体平均速度,m/s; d为旋涡发生体特征宽度,m; Su为斯特罗哈数。 无量纲,它的数值范围为0.14- 0.27. SI悬 雷诺数的函数,Si-f( l/Re )
当莆诺数Re在102 - 105范围内,S值约为02,因此,在割量中,要尽量清足流体的雷诺数在102- 105,旋祸频率{= 0.2wd。
由此可知,通过测量能涡频率就可以计算出直过旋涡发生体的流体平均速度v.再由式q=rA可以求出流量q,其中A为流体流过旋涡发生体的截面积。
这些交替变化的旋滿就形成了一系列交替变化的负压力,该压力作用在检测探头上,便产生一系列交变电信号,经过前置放大器转换、整形、放大处理后,输出与旋涡同步成正比的脉冲频率信号或标准信号。
涡街流量计按频率检出方式可分为应力式、应变式、电容式、热敏式、振动体式、光电式及超声式等。
涡街流量计是属于较为年轻的一类流量计,但其发展迅速,目前已成为通用的一类流量计。
1.优点
(1)涡街流量计无可动部件,测量元件结构简单,性能可靠,使用寿命长。
(2)祸街流量计测量范围宽。量程比一般能达到1:10。
(3)涡街流量计的体积流量不受被测流体的温度、压力、密度或粘度等热工参数的影响。一般不需单独标定。它可以测量液体、气体或燕汽的流量。
(4)它造成的压力损失小。
(5)准确度较高,重复性为0.5%,且维护量小。-次元件的流量特性对控制系统产生的影响。由于涡街的输出频率与流量成线性关系,当它与调节阀,调节器级成一一个控制系统时,相当于一个时滞和时间常数都小到可忽略的一个滞后环节,可视为比例 环节,广义对象的特性完全取决于回路中其他环节。对控制系统几无影响。
2.缺点
(1)涡街流量计工作状态F的体积流量不受被测无体温度、压力,密度等热工参数的影响,但液体或蒸汽的最终测量结果应是质量流量,对于气体,最终测量结果应是标准体积流量。质量流量或标准体积流量都必须通过流体密度进行换算,必须考虑流体工况变化引起的流体密度变化。
(2)造成流量测量误差的因素主要有:管道流速不均造成的测量误差:不能准确确定流体T.况变化时的介质密度:将湿饱和蒸汽假设成F饱和蒸汽进行测量。这些误差如果不加以限制或消除,涡街流量计的总测量误差会很大。
(3)抗振性能差。外来振动会使涡街流量计产生测量误差,甚至不能正常工作。道道流体高流速冲击会使涡街发生体的悬臂产生附加振动,使测量精度降低。大管径影响更为明显。
(4)对测量脏污介质适应性差。涡街流量计的发生体极易被介质脏污或被污物缠绕,改变几何体尺寸.对测量精度造成极大影响。
(5)直管段要求高。专家指出,涡街流量计直管段一定要保证前40D后20D,才能满足测量要求。
(6)耐温性能差。祸街流量计- -般只能测量300C以F介质的流体流量。
以上内容由捷配仪器仪表网小编为您整理提供!