电磁流量计是根据法拉第电磁感应原理设计制造出来的,而电磁流量计的实际使用工况又非常复杂,存在有其他电磁电流干扰的影响,特别是遇到雷电等恶劣天气时,雷电会对电磁流量计产生影响甚至造成损坏,下面流量计厂家的技术小编总结了几点电磁流量计的防雷方法,希望可以给大家带到帮助。
雷电主要有两种形式:一种是不同带电云层间的放电,另一种是云层对地的放电,后者是雷害的主要根源,直接雷击、雷电静电感应和电磁感应是造成仪表损坏的主要因素。仪表防雷的目的不是避免雷击,而是为了保护仪表不被雷击电波损坏。
制造厂在电磁流量计产品设计时,对流量计系统的防雷和抗干扰考虑了一定的防护措施。如:电源部分加装瞬态抑制二级管或放电管;电源、信号输入/输出电气隔离;数字通讯接口采用抗雷击器件;传感器与转换器之间的信号连接电缆采用三重屏蔽;要求流量计系统良好接地等。但是,在雷电频繁与强烈的地区,用户应采取进一步的措施:
1.电源输入端加装1:1变压器和避雷器,避免电源被击穿。
2.在信号模拟输出部分加装避雷器。
3.流量计系统接地一定要良好,且保证接液地与大地良好连接,避免管线和流体介质传导的雷击电流流过仪表本体。
电磁流量计特别设计了带背光宽温的中文液晶显示器,功能齐全实用、显示直观、操作使用方便,可以减少其他电磁流量计英文菜单所带来的不便。
另外我们独家设计4-6多电极结构,进一步保证了测量精度并且任何时候无需接地环,减轻了仪表体积和安装维护的麻烦。
技术原理
1.工作原理。电磁流量计的工作原理是基于法拉第电磁感应定律。
在电磁流量计中,测量管内的导电介质相当于法拉第试验中的导电金属杆,上下两端的两个电磁线圈产生恒定磁场。
当有导电介质流过时,则会产生感应电压。管道内部的两个电极测量产生的感应电压。
测量管道通过不导电的内衬(橡胶,特氟隆等)实现与流体和测量电极的电磁隔离。
2.测量原理。根据法拉第电磁感应定律,当一导体在磁场中运动切割磁力线时,在导体的两端即产生感生电势e,其方向由右手定则确定,其大小与磁场的磁感应强度B,导体在磁场内的长度L及导体的运动速度u成正比,如果B,L,u三者互相垂直,则:e=Blu(3-35)。
与此相仿.在磁感应强度为B的均匀磁场中,垂直于磁场方向放一个内径为D的不导磁管道,当导电液体在管道中以流速u流动时;
导电流体就切割磁力线.如果在管道截面上垂直于磁场的直径两端安装一对电极则可以证明,只要管道内流速分布为轴对称分布,两电极之间也特产生感生电动势:e=BD(3-36)。式中,为管道截面上的平均流速.由此可得管道的体积流量为:qv=(3-37)。
由上式可见,体积流量qv与感应电动势e和测量管内径D成线性关系,与磁场的磁感应强度B成反比,与其它物理参数无关,这就是电磁流量计的测量原理。特点
测量精度不受流体密度、粘度、温度、压力和电导率变化的影响,传感器感应电压信号与平均流速呈线性关系,因此测量精度高。
测量管道内无阻流件,因此没有附加的压力损失;测量管道内无可动部件,因此传感器寿命极长。由于感应电压信号是在整个充满磁场的空间中形成的,是管道载面上的平均值,因此传感器所需的直管段较短,长度为5倍的管道直径。
传感器部分只有内衬和电极与被测液体接触,只要合理选择电极和内衬材料,即可耐腐蚀和耐磨损。
LDE转换器采用国际较新先进的单片机(MCU)和表面贴装技术(SMT),性能可靠,精度高,功耗低,零点稳定,参数设定方便。点击中文显示LCD,显示累积流量,瞬时流量、流速、流量百分比等。
双向测量系统,可测正向流量、反向流量。采用特殊的生产工艺和优质材料,确保产品的性能在长时候内保持稳定。
电磁流量计传统的定期维护检查是将流量传感器卸下管线清扫和检查,然后实施流量校准。为减少流量传感器从管道上卸装损伤衬里,先在管线上测量绝缘电阻等推断有无异常现象,再决定下一步是否卸下管线检查或实流流量校准。一般有条件的(真正贯彻ISO9001质量管理体系)企业大致检查方式为:
(1)1/3只作在线检查;
(2)1/3卸下管线做接液部位清扫后检查;
(3)1/3离线作流量校准。
检查内容:
检查电磁流量计,除零点检查外,还将流量传感器、转换器和连接电缆分开进行。
1、整机零点检查
整机零点检查的技术要求是:流量传感器测量管充满液体且无流动,这在许多企业现场不具备条件而放弃整机的零点检查和调整,但可转而对转换器作单独的零点检查和调整。从技术上讲,这必须在传感器检查完毕后且保证传感器励磁回路和信号回路的绝缘电阻正常(均包含电缆)的前提下才有实际意义,否则整机就不能正常运行。通常转换器单独零点为负值,数值也很小;如果其绝对值大于满量程的5%就需要先做检查,待确认原因后再作调整。通常情况下电磁流量计整机的零点和转换器单独的零点差异值小于1%。大于5%的零点差异值有许多情况是用户在管道阀门关闭不良情况下进行不正确调零操作所致。
2、连接电缆检查
该项检查内容是检查信号线与励磁线各芯导通和绝缘电阻,检查各屏蔽层接地是否完好。3、转换器检查
该项检查内容是用通用仪表以及流量计型号相匹配的模拟信号器代替传感器提供流量信号进行调零和校准。校准包括零点检查和调整、设定值检查、励磁电流测量、电流/频率输出检查等。需要注意的是:检查项目要与上一次检查值(或出厂值)进行比较,分析其是否有变化或变化是否符合原计量要求。
4、流量传感器检查
该项检查内容是:通过对励磁线圈的检查和检查转换器所测得的励磁电流以间接评价磁场强度是否变化;测量电极接液电阻以评估电极表面受污秽和衬里附着层状况;检查各部位绝缘电阻以判断零件劣化程度以评估是否会引入干扰。对能停止介质流动条件的管线则可观察和测量电极和衬里附着层厚度,以估算清洗附着层前后因流动面积变化引入的流量值变化。
(1)测量励磁线圈铜电阻
用高精确度数字万用表或惠斯登电桥测量线圈电阻,必要时作温度系数修正后与仪表档案值比较。确认线圈是否导通良好和无匝间短路现象。
(2)检查励磁线圈绝缘电阻
励磁线圈及其接线端子受潮后励磁回路对地绝缘下降,很可能把励磁信号引入流量信号传输电路,使电极加上一个较大的绝缘电阻和信号电阻对励磁电压的分压,形成较大的共模干扰信号。当这一干扰信号超过转换器前置放大器的抑止能力,就会使转换器零点漂移。绝缘电阻下降不十分严重时,这一现象在仪表运行时还不易察觉。除IP68无接线端子盒外,实践中由于疏忽,接线端子盒未密封进入潮气,端子绝缘电阻下降到5~6MΩ以下时易造成故障。吹干端子,通常故障就可消除。
(3)检查电极接液电阻
流量传感器的电极接液电阻应在新装仪表调试好后立即测量,并记录在案。以后每维护一次测量一次,分析比较这些数据有助于判断仪表故障原因。
电极与液体接触电阻值取决于接触表面的被测液体电导率。不同介质所测电阻值有明显区别。电极接液电阻可用指针式万用表在测量管充满液体时分别测量每个电极端子与地间的电阻。经验表明分别测量两电极的接触电阻值之差应小于10%~20%,否则表明有故障。
测出的电极接液电阻与原测量值比较若有差异,原因为:a、两电极绝缘性附着层覆盖不一致或某一电极信号回路绝缘电阻下降;b、电阻值增加则是电极表面被绝缘层覆盖;c、电阻值减少则是电极附近衬里表面附着导电沉积层或电极装配(如绝缘套圈)绝缘下降。有时虽未形成故障,但应作为故障前兆而采取相应措施。
(4)测量电极/液体间极化电压
测量此电压将有助于判断电极是否被污秽或覆盖,由此可能形成零点不稳或输出晃动的故障。
(5)检查信号电路绝缘和励磁电路/信号电路之间绝缘
该项检查目的是评估是否因绝缘下降而引入干扰。检查信号电路时,信号线要临时与电极脱开。引起绝缘下降原因有接线盒未密封进入潮气、防护型传感器的电缆割断再接续时未做好防潮处理等。
(6)检查电极绝缘电阻和衬里状况
该项检查对小口径仪表要从管线卸下,对大口径仪表则可放空积液后从入孔进入管道观察:擦干衬里内表面用兆欧表分别测试两电极对地绝缘电阻;若衬里有附着层则须清除并按积层厚度确定清洗周期;若附着层不厚且电导率与液体相同则可忽略不计面积变化附加误差;若附着层电导率小于液体将产生正向附加误差,反之则产生负向附加误差。电极绝缘电阻一般要求大于100MΩ,绝缘下降多因电极、衬套等受外界浸水受潮所致(用热吹风排除潮气即可);若绝缘破坏(如腐蚀液从密封处侵入)则须调换传感器或返回厂家修理。