从2004 年开始,分立式分析系统作为一种更好的分析方法,开始在环境分析领域得到应用。分立式分析方法来自于医疗领域,早在上世纪70年代末,分立式分析系统就开始广泛应用于全血、血清和其他液体样本的临床检测。
和临床实验室一样,环境实验室同样对简便启动过程、低试剂消耗、低废物产生、低维护成本、简单培训,高检测速度和灵活检测的检测方法有强烈的需求。
分立式检测方法就是这种需求的理想化解决方案,它可以在同一时间对不同样本进行不同参数的检测,并且它的灵活平台更是环境实验室工作人员所需要的;
因为环境分析中的样本类型更加纷繁复杂,检测方法需要不断地开发和更新,所以一个开放灵活的分析平台,更具有吸引力。
分立式分析系统的优势在于可以长期存储多种标准曲线。典型的环境实验室中,由于样本类型和基质的复杂性,分析师往往在检测前需要针对不同样本分别进行定标后才能开始检测工作,工作量庞大且繁琐。
分立式分析系统可以预存多种样本的标准曲线,可以免去检测前的大量准备工作,分析师拿到样本后可以马上开始检测。
同时分立式分析系统提供很多样本位置,可以同时对多种样本的不同指标进行检测,系统软件自动控制检测流程并统筹时间。
另外,全自动分离式水质分析仪有镉还原模块的机型,样本经过镉包被的细柱后其中的硝酸盐被还原为亚硝酸盐,然后进行定定量检测。
镉柱还原模块提供了一种更精密、更准确、更灵敏的硝酸盐检测方法,更重要的是这种方法能实现与其他指标的同步运行。镉柱还原力经过处理后可以重复使用,降低了检测成本。
水是人们生活中必可或缺的重要资源之一;
然而,近些年来环境污染问题日益严重,水中的有毒有害物质也不断增多;
一旦人们饮用了这样的水,会给身体健康造成一定程度的危害,所以人们越来越重视水质分析。
便携式水质分析仪zui为显著的特点就是性能优异、体积轻巧、便于携带、易于操作,广泛应用于水质分析检测中;
随着技术的不断发展和完善,该仪器无论从性能还是应用效果上均获得了长足进步。
便携式多参数水质分析仪的主要应用:
1.随时随地检测水质,确保饮水安全
便携式水质分析仪器能够在不受地点和时间限制的情况下,准确测出水源水质的污染程度,并及时制定水处理措施,对处理效果实施评价。
随着社会经济的快速发展以及对生态环境破坏程度的日益加重,水源受污染的风险随之增大,为了保证广大群众的饮水安全;
避免不合格水质对人体健康造成影响,更凸显出便携式水质分析仪到水源现场进行随时检测、判断水质的重要性。
2.水产养殖领域应用水质实时检测监控系统
在水产养殖方面,通常根据检测人员的经验采用目测比较法对水质进行检测,存在较大的随意性和主观臆断。
由于经验检测方法未能对检测结果进行量化处理,极大的降低了水质分析的度;
同时实验室化学试剂检测水质的成本较高、检测周期较长,致使这两种常见检测方法的应用效果不佳。
而水质实时检测监控系统具备便携操作的优势,能够实现对目标水域水质的及时、连续、准确监测。
3.应用于多行业领域中的水质成分检测
便携式水质分析仪和水质实时检测监控系统在环境保护领域以及化工、轻工、食品等行业中拥有广阔的应用前景;
能够对各种水溶液、饮料、食品中所含化学成分进行检测,不仅可以满足农业生产对水质检测的需求,还能够涉及一些农副产品的检测项目,确保人们饮食健康。
水质分析仪是一种常用的检测仪器,适用于环保检测站、市政水处理过程、市政管网水质监督、农村自来水监控等行业中。用户对于水质分析仪的应用知识需要进行掌握,下面小编就来具体介绍一下水质分析仪的工作原理,希望可以帮助到大家。
水质分析仪的工作原理:
水质分析仪主要采用离子选择电极测量法来实现精确检测的。仪器上的电极:PH、氟、钠、钾、钙、镁、和参比电极。每个电极都有一离子选择膜,会与被测样本中相应的离子产生反应,膜是一离子交换器,与离子电荷发生反应而改变了膜电势,就可检测液,样本和膜间的电势。膜两边被检测的两个电势差值会产生电流,样本,参考电极,参考电极液构成"回路"一边,膜,内部电极液,内部电极为另一边。
内部电极液和样本间的离子浓度差会在工作电极的膜两边产生电化学电压,电压通过高传导性的内部电极引到到放大器,参考电极同样引到放大器的地点。通过检测一个精确的已知离子浓度的标准溶液获得定标曲线,从而检测样本中的离子浓度。
溶液中被测离子接触电极时,在离子选择电极基质的含水层内发生离子迁移。迁移的离子的电荷改变存在着电势,因而使膜面间的电位发生变化,在测量电极与参比电极间产生一个电位差。
水质分析仪在使用过程中应该注意以下问题:
1、系统全密闭问题。卡尔-费休试剂液路部分连接一定要紧固,从试剂瓶到计量泵再到反应池,否则发生试剂泄漏将直接影响测试结果。其不密闭的另一个问题是测试时由于卡尔费休试剂在试验中吸收空气水分,会导致滴定终点延迟。
2、取样的准确问题。在标定卡尔-费休试剂时需要取用10mg水,尽量使用10ul取样器,这样不但准确、速度快,还能够防止水滴粘附。同样地,取用甲醇试剂、乙酯也有类似的问题,取放完毕后应注意尽量缩短反应池打开的时间。
3、磁性搅拌速度调整。在反应池中,因为滴定试剂加入时在局部,与电极不在一处,因此搅拌速度可以以快到不形成湍流为止,这样可以比较快达到终点。
4、滴定速度设定应先快后慢。滴定时先快速以尽量缩短试验时间,而在接近终点时应变慢,这样可提高计量精确度。
5、当日试验完毕后,一定要排空系统中的卡尔-费休试剂,然后用甲醇清洗干净,千万不能用水清洗系统,因为其不容易挥发,将造成下次试验时卡尔-费休试剂标定不实。
6、水分测定仪应该远离强磁场,避免工作时电子显示跳动,出现不正常现象。手动的水分测定仪,因为必须使用玻璃自动滴定管计量卡尔-费休试剂和甲醇溶剂,而玻璃滴定管本身因为平衡压力的关系,又必须与外界接通。
7、系统尽量密闭。手动的水分测定仪需要在吸球管路和玻璃滴定管上口加接填充干燥剂的U型管,以便减少空气水分对测试结果的干扰。在空气相对湿度大于70%的环境下,应尽量不安排水分测试。
8、在调整滴定管的滴定速度时,可以调整到1滴/秒。滴定速度太快将导致到达终点时产生的延时误差较大;而滴定速度太慢则会延长测试的过程,上述干扰容易导致迟迟不到达终点。