液相色谱仪常见的故障一是堵,二是漏。下面我们来谈一下“堵”的情况。(注:流动相以甲醇为例,色谱柱以C18为例)
“堵”的表现现象就是柱压异常升高,直接原因就是流路不畅。堵塞的主要位置就是在色谱柱的前端,主要原因就是流动相里有杂质,杂质的主要来源就是细菌。
“堵”的原因之一:配制流动相时细菌污染
首先,我们要认识到,一般的国产甲醇其实不需要额外过滤处理,直接使用没有问题。即使是有些固态微粒杂质,也能在液相流路系统最前端的过滤头上排除,真正容易引起问题的,是水中的细菌。
新制备的纯水在室内放置几天就会长菌,而这些细菌虽然肉眼不可见,却足以堵塞柱填料颗粒的空隙,造成柱子很快报废。这就是在配制流动相时造成的细菌污染的原因,解决它的方法很简单,就是确保水的可靠性。这里有两种方式推荐:
(1)较为理想的方式当然是购买实验室专用纯水机,既方便又可靠,质量也放心。唯一的缺点就是价格不菲。
(2)成箱购买市售品牌纯净水,如,500mL一支的怡宝或娃哈哈,这些水的质量足以应付液相色谱的要求。先随机抽取一支做一下细菌平板实验,待菌落数合格方可使用。这样每次只要单独开一支即可,也很方便。每次成本2元左右。
※这里特别指出一个细节:在绝大多数书本上,凡谈到配制流动相都会谈到最后有一个过滤的步骤。但是从我们长期使用的实际效果来说,只要能保证水的质量,这一步完全可以也应当去除。
原因有以下三点:
(1)流动相过滤在理论上有好处,但是,实际操作时由于不可能做到专瓶专用,反而容易造成的交叉污染,对于配比复杂的流动相影响更大。
(2)流动相过滤在经济成本上不划算。买一套过滤装置要6000多元,且过滤器公认是比较容易损坏的设备。主要是过滤片的成本太高,一片就要几十元。按一般液相柱的正常使用寿命计算,过滤片的成本会远远高于色谱柱的成本。
(3)流动相过滤对于工作效率成本不划算。使用溶剂过滤器有一个预清洗、装备、使用、用后清洗,晾干的过程,至少也有一个小时的时间。这个成本也不能忽视。
(4)在实际工作未发现流动相不过滤会对柱寿命有任何影响。我们起码有6年时间没有做过流动相过滤的工作,但是和国内同行相比较,在同等使用强度下我们的柱寿命是比较长的。
“堵”的原因之二:使用流动相时的细菌污染。
指的是:
流动相刚开始没有长菌,在使用时却产生了细菌污染。这主要是在使用多元液相色谱仪时的一种不良使用习惯造成的。
举简单的例子:
50%的甲醇水流动相,有两种使用方式。一种方式是在上机前就配好混合在一起,另一种方式是在流路A放纯甲醇,流路B放纯水。
从单纯实验效果来说,后一种有明显的优点:首先是简单,不需要实验者另个计算配比混合,其次就是比例准确,能得到保留时间重复性极好的实验效果。
但是,它有一个致命的缺陷,就是纯水在流动相瓶中几天时间就会长细菌(很多情况下不仅仅用纯水作流动相,而是用缓冲盐溶液,本身就是优质肥料,细菌长得更迅速),一旦有细菌柱子就坏得很快。所以这种方式要求操作人员每次实验都要用新制备的纯水,更要求在每次实验后把水相换掉,换成甲醇冲洗干净,这一点在实际工作中很多人意识不强,就是意识到了但多次使用中总有一两次会遗漏,但是往往这一两次就足以产生致命的影响。因为液相色谱柱的堵塞是不可逆的。
所以,宁可牺牲小小的保留时间的重复性,也不要用纯水溶液作为流动相的一组。从实际实验效果来说,我建议用10%的甲醇水代替纯水溶液(以前我做过不同比例甲醇水的细菌总数实验,在5%就基本可以抑菌,在10%及以上就可以完全杀菌了),这样可以有效排除长细菌的隐患,既可作流动相,也可冲柱。就算是在配制流动相时会计算得麻烦一些,但是一次麻烦,终身受益。
“堵”的原因之三:不适当操作。
常见问题的有以下几种:
(1)在更换零件时选择的型号有误,接口不是很匹配,在拧紧的时候产生变形而使得管路堵塞。
(2)样品处理液净化得不干净,长期会在六通阀和柱之间形成阻塞不畅。
(3)在使用手动六通阀时,有些人可能由于手劲小的原因,转动的不到位,于是造成流路形成了死堵,压力快速升高超过警戒值。
(4)在使用金属管路作出废液管时,应当注意可以废液瓶中先放一些水,并把废液管的出口端放在液面下。如果位于在液相上且实验使用较高浓度的缓冲盐溶液,在停机时可能在出口端结晶成块并造成堵塞。这种情况不常见,但却的确发生过。
“堵”的原因讲了不少,现介绍查堵的方法。
在发生“堵”的现象后,就需要找出原因,主要是什么位置发生了“堵”。注意,绝大多数情况下,整个系统只会有一个地方发生堵塞。
查堵的方法是从尾向前逆向分段拆开,仔细观察压力数值,如果某一个部件(柱子除外)装上和拆下时的压力差别很大,可发展变化判断。至于柱的堵塞,可以通过换同样规格的柱的压力是否一致来判断。
高效液固色谱仪是利用样品各组分在固定相和流动相中吸附-解吸作用的差异,使各组分在作相对运动的两相中反复多次受到吸附-解吸作用而达到相互分离。
主要类型:
液固吸附色谱
1.1分离原理液固色谱是基于各组分吸附能力的差异进行混合物分离的,其固定相是固体吸附剂。
1.2固定相;吸附色谱固定相可以分为极性和非极性两大类。
1.3流动相;流动相要求:
1.3.1选用的溶剂应当与固定相互不相溶,并能保持色谱柱的稳定性
1.3.2选用的溶剂应有高纯度,以防所含微量杂质在柱中积累,引起柱性能的改变。
1.3.3选用的溶剂性能应与所使用的检测器相匹配,如果使用紫外吸收检测器,就不能选用在检测波长下有紫外吸收的溶剂;若使用示差折光检测器,就不能用梯度洗脱。
1.3.4选用的溶剂应对样品有足够的溶解能力,以提高测定的灵敏度。
1.3.5选用的溶剂应具有低的黏度和适当低的沸点。
1.3.6应尽量避免使用具有显著毒性的溶剂,以保证工作人员的安全
1.4应用:液固色谱是以表面吸附性能力为依据的,所以它常用于分离极性不同低的化合物,也能分离那些具有相同极性基团,但数量不同的样品。
液液分配色谱
1.1分离原理;分配色谱法的原理与液液萃取相同,都是分配定律。
1.2固定相;分配色谱固定相由两部分组成,一部分是惰性载体,另一部分是涂渍在惰性载体上的固定液。
1.3流动相;分内色谱中,要求流动相尽可能不与固定液互溶
1.4应用;既能分离极性化合物,又能分离非极性化合物。由于不同极性键合固定相的出现,分离的选择性可得到很好的控制。
键合相色谱
1.1分离原理
1.1.1正键合相色谱分离远离:使用的是极性键和固定性,溶质在此类固定相上的分离机理属于分配色谱。
1.1.2反键合相色谱分离原理:使用的是极性较小的键合固定相,其分离机理可用疏溶剂作用理论来解释。
1.2固定相;按极性大小可分为非极性、弱极性、极性化学键合固定相三种。
1.3流动相
1.3.1正键合相色谱中,采用和反相液液分配色谱相似的流动相,流动相的主体成分为己烷或庚烷。
1.3.2反相键合相色谱中,流动相采用和反相液液分配色谱相似的流动相,主题为水。
1.4应用
1.4.1正键合相色谱法的应用:多用于分离各类极性化合物如染料、炸药、多巴胺、氨基酸等;
1.4.2反键合相色谱法的应用:由于操作简单,稳定性和重复性好,该方法已成为一种通用型液相色谱分析方法。在生物化学、医药研究、食品分析和环境污染分析等多个领域有了很大的应用和发展。
凝胶色谱
凝胶色谱又称分子排阻色谱,它是按照分子尺寸大小顺序进行分离的一种色谱方法。凝胶色谱法的固定相凝胶是一种多孔性的聚合材料,有一定的形状和稳定性。根据所用流动相的不同,凝胶色谱法可以分为两类:即用水溶剂做流动相的凝胶过滤色谱法(GFC)与用有机溶剂如四氢呋喃做流动相的凝胶渗透色谱法(GPC)。
当样品定量管经过充分的冲洗后,可以将旋柄转回取样位置(Load),也可以继续保持在进样位置,到下次取样前才切换回取样位置。在切换回取样位置时,将样品进样针或微量样品进样针从进样阀中拔出。
为防止交叉污染,正常情况下不必每次进样后都冲洗进样阀注射针导入口。进样阀内根据专利设计的直接连接进样孔,可以使注射针头的前端直接连接到样品定量管的末端,没有其他空间供样品残留。这样在下一次进样时,就不会有上一次残留的样品进入样品定量管。
但是在进样针头插入或拔出过程中,会有痕量的样品沉积在针头密封区域。精密的测定显示这种残留有1nL ~ 10nL。这表明进20μL样品,会残留0.005% ~ 0.05%。每次进样后冲洗注射针导入口可以将此残留冲洗干净。冲洗注射针导入口的过程为:设定流动相的流速为0.1mL/min ~ 1mL/min,将注射针导入口冲洗头(Rheodyne部件号7125-054)连接到一只体积相对较大的注射器上,用大量的流动相只在进样位置清洗注射针导入口。这样进入进样阀中的液体绕过样品定量管由样品溢出管5# 口排出。这一过程可以将注射针导入口、引导管、注射针导入管和注射针密封圈彻底清洗。而采用注射器完全插入式的冲洗方式,则不能全部清洗上述部分的表面。在取样位置将注射针插入注射针导入口时,针头推动注射针密封圈内少量样品液体(上一次冲洗注射针导入管留下的)进入样品定量管。当该样品液体与所用的流动相组成不同,且同时采用部分充满定量管进样方式时,在高灵敏度的检测器上可能出现怪峰。所以冲洗注射针时可以用流动相冲洗。