原子力显微镜(atomicforcemicroscope,简称AFM)利用微悬臂感受和放大悬臂上尖细探针与受测样品原子之间的作用力,从而达到检测的目的,具有原子级的分辨率。由于原子力显微镜既可以观察导体,也可以观察非导体,从而弥补了扫描隧道显微镜的不足。原子力显微镜是由IBM公司苏黎世研究中心的格尔德·宾宁与斯坦福大学的CalvinQuate于一九八五年所发明的,其目的是为了使非导体也可以采用类似扫描探针显微镜(SPM)的观测方法。原子力显微镜(AFM)与扫描隧道显微镜(STM)最大的差别在于并非利用电子隧穿效应,而是检测原子之间的接触,原子键合,范德瓦耳斯力或卡西米尔效应等来呈现样品的表面特性。
优点
相对于扫描电子显微镜,原子力显微镜具有许多优点。不同于电子显微镜只能提供二维图像,AFM提供真正的三维表面图。同时,AFM不需要对样品的任何特殊处理,如镀铜或碳,这种处理对样品会造成不可逆转的伤害。第三,电子显微镜需要运行在高真空条件下,原子力显微镜在常压下甚至在液体环境下都可以良好工作。这样可以用来研究生物宏观分子,甚至活的生物组织。
缺点
和扫描电子显微镜(SEM)相比,AFM的缺点在于成像范围太小,速度慢,受探头的影响太大。原子力显微镜(AtomicForceMicroscope)是继扫描隧道显微镜(ScanningTunnelingMicroscope)之后发明的一种具有原子级高分辨的新型仪器,可以在大气和液体环境下对各种材料和样品进行纳米区域的物理性质包括形貌进行探测,或者直接进行纳米操纵;现已广泛应用于半导体、纳米功能材料、生物、化工、食品、医药研究和科研院所各种纳米相关学科的研究实验等领域中,成为纳米科学研究的基本工具。原子力显微镜与扫描隧道显微镜相比,由于能观测非导电样品,因此具有更为广泛的适用性。当前在科学研究和工业界广泛使用的扫描力显微镜(ScanningForceMicroscope),其基础就是原子力显微镜。
原子力显微镜的原理:
原子力显微镜是利用原子间的相互作用力来观察物体表面微观形貌的。AFM的关键组成部分是一个头上带有探针的微悬臂。微悬臂大小在数十至数百mm,通常由硅或者氮化硅构成.探针针尖长度约几mm,尖端的曲率半径则在0.1nm量级。当探针接近样品表面时,针尖和表面的作用力使微悬臂弯曲偏移。这种偏移由射在微悬臂上的激光束反射至光电探测器而测量到。
当承载样品的压电扫描器在针尖下方运动时,微悬臂将随样品表面的起伏而受到不同的作用力,继而发生不同程度的弯曲.因此,反射到光电探测器中光敏二极管阵列的光束也将发生偏移.光电探测器通过检测光斑位置的变化,就可以获得微悬臂的偏转状态,反馈电路可把探测到的微悬臂偏移量信号转换成图像信号,通过计算机输出到屏幕上,同时根据微悬臂的偏移量控制压电扫描器的运动。
下一篇:冷热冲击试验箱技术参数