激光粒度仪是全球范围内公认的先进,快捷的颗粒测试仪器,国内国外有不少研制激光粒度仪的厂家,产品种类也比较繁多,如何才能选择一款适合自己的激光粒度仪呢?以下这几个产品关键点是必须要考虑的:
一、激光器选择:
激光粒度仪的重要部件之一,主要有HE-NE激光器和半导体激光器两种,其中HE-NE激光器的各项性能均优于半导体激光器,且成本也远高于半导体激光器,半导体激光器单向性差的问题,对测试结果的稳定性影响很大。因此推荐用户选择HE-NE激光器。
二、光电探测器:
国内产品采用的光电探测器的种类大同小异,一般就是半环式、点阵式等,半环式的优势是能够以较少的通道数达到很高的探测精度。而且在出现断环时可以临时采取并环操作,对测试结果影响很小。点阵式属于比较老的探测器类型,现在用的比较少。
三、仪器结构问题:
主要分为整体式和分体式,整体式就是将分散系统和测试系统整合为一体,协同操作,分体式则是分散系统独立于测试系统,测试者需要先操作分散系统,将样品分散好再将分散好的样品通过管道导入测试系统进行测试。这样的缺点是协同操作性不好,比较重的颗粒容易在管道中沉淀,清洗不便且对测试结果有一定影响,现在整体式结构的仪器是发展方向,进口产品大都采用整体式结构,国内的产品也慢慢在向整体式结构发展。
四、光路设计问题:
光路设计是激光粒度仪研制的基础,进口产品的优势不但在制造工艺上,光路的设计水平也是技术先进的标志,国内的厂家现在大都采用简单的平行光路设计。
激光粒度仪是通过测量颗粒群的衍射光谱经计算机处理来分析其颗粒分布的。它可用来测量各种固态颗粒、雾滴、气泡及任何两相悬浮颗粒状物质的粒度分布、测量运动颗粒群的粒径分布。
激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。
由于激光具有很好的单色性和极强的方向性,所以一束平行的激光在没有阻碍的无限空间中将会照射到无限远的地方,并且在传播过程中很少有发散的现象。
当光束遇到颗粒阻挡时,一部分光将发生散射现象。散射光的传播方向将与主光荣的传播方向形成一个夹角θ。
散射理论和结果证明,散射角θ的大小与颗粒的大小有关,颗粒越大,产生的散射光的θ角就越小;颗粒越小, 产生的散射光的θ角就越大。
激光粒度仪经典的光路由发射、接受和测量窗口等三部分组成。发射部分由光源和光束处理器件组成,主要是为仪器提供单色的平行光作为照明光。
接收器是仪器光学结构的关键。测量窗口主要是让被测样品在完全分散的悬浮状态下通过测量区,以便仪器获得样品的粒度信息。
接收器由傅立叶选镜和光电探测器阵列组成。所谓傅立叶选镜就是针对物方在无限远,像方在后焦面的情况消除像差的选镜。激光粒度仪的光学结构是一个光学傅立叶变换系统,即系统的观察面为系统的后焦面。
由于焦平面上的光强分布等于物体(不论其放置在透镜前的什么位置)的光振幅分布函数的数学傅立叶变换的模的平方,即物体光振幅分布的频谱。
激光粒度仪将探测器放在透镜的后焦面上,因此相同传播方向的平行光将聚焦在探测器的同一点上。
据测器由多个中心在光轴上的同心圆环组成,每一环是一个独立的探测单元。这样的探测器又称为环形光电探测器阵列,简称光电探测器阵列。
激光器发出的激光束经聚焦、低通滤波和准直后,变成直径为8~25 mm的平行光。平行光束照到测量窗口内的颗粒后,发生散射。散射光经过傅立叶透镜后,同样散射角的光被聚焦到探测器的同一半径上。
一个探测单元输出的光电信号就代表一个角度范围(大小由探测器的内、外半径之差及透镜的焦距决定)内的散射光能量,各单元输出的信号就组成了散射光能的分布。
尽管散射光的强度分布总是中心大,边缘小,但是由于探测单元的面积总是里面小外面大,所以测得的光能分布的峰值一般是在中心和边缘之间的某个单元上。
当颗粒直径变小时,散射光的分布范围变大,光能分布的峰值也随之外移。所以不同大小的颗粒对应于不同的光能分布,反之由测得的光能分布就可推算样品的粒度分布。
测量下限是激光粒度仪重要的技术指标。激光粒度仪光学结构的改进基本上都是为了扩展其测量下限或是小颗粒段的分辨率基本思路是增大散射光的测量范围、测量精度或者减少照明光的波长。
激光粒度仪是一种新型的粒度测试仪器,主要适用于微米级颗粒的测试,经过改进也可将测量下限扩展到几十纳米,激光粒度仪操作方法如下:
1.激光粒度仪样品准备
样品必须能够准确反映待测物质,确保使用的样品是具有代表性的,若样品储存在容器中,测量前样品应充分混合,确保大小颗粒都被取样。液体样品需要选择合适的泵速确保样品充分混合,防止大颗粒沉入容器底部而没有被测量;干法测量结束后不要在样品盘上有残留样品,尽量保证所有样品颗粒都被测量。
2.激光粒度仪光学系统的洁净度
激光散射测量是一种高分辨的光学检测手段,样品池检测窗是测量区域的主要组成部件,窗口的灰尘和污染物质会散射激光,杂质散射光会随分散样品的散射光一起被测量,从而影响测量的精度。通过观测测量背景就能判断系统的光学洁净程度是否达标。
3.激光粒度仪基本测量
一个完整测量过程包括电子背景测量,光学背景测量和对光,加入样品,开始粒径测量,完成测量。进入测量过程后,软件界面的左下方会有对话框指示测量的进程。
1)测量背景:颗粒区的测量数据,由于受到设备电子背景噪音,测试光路中镜面灰尘,以及分散介质中的杂质颗粒影响会有一定的偏差。通过“测量背景”能纯化粒径测量,上述的背景信息和数据会从样品测量数据中减去以得到精确的数据。
2)加入样品:在背景测量结束后,出现加入样品提示。左方遮光度Obscuration指示栏直观地表示测量样品的数量,遮光度会随着样品数量的增加而逐渐增高。在未加入样品前,右方的测量数据柱状图应该是随机变化,而且柱状数据条的高度一般不超过5。
3)开始测量:当遮光度达到测量要求,停止添加样品后保持稳定(一般意味着样品颗粒没有发生溶解或凝聚,样品颗粒正常稳定分散),同时测量数据窗口显示稳定的,足够强度的柱状数据分布,可以按下“Start”键开始测量。
4.激光粒度仪查看结果
一旦测量完成,测量信息被软件收集和分析,将以多种形式显示。每种显示数据的方式又称为报告,测量窗口中所有的报告均显示相同的测量数据。所有的测量和分析数据都存在“Record”中,Record存放在测量文件里(*.mea)。一个测量文件包含一个或多个记录,一条记录包含了单个测量的所有信息,包括原始测量数据和计算粒度分布的参数。可以选择File-Open打开测量文件。