蒸汽流量计种类还是很多的,孔板还有涡等流量计街都是标准的,还有皮托管,变孔板,碰撞等各种非标的,肯定每种特点不一样,在锅炉主蒸汽流量测量中使用的流量计,对电厂安全性和经济性至关重要,由于加工困难和压损大,一般流量计很难达到测量要求。
蒸汽流量计的类别都有哪些呢,下面来就和小编来看一下吧!
1、差压式流量计
在蒸汽流量的测量中,差压式流量计仍居首位,其由于有权威标准为依据,并具有检测件易于复制;结构简单、牢固,性能可靠,使用期长;可使用的温度压力范围广;价格低,不用实流校准等优点。
差压式流量计整套仪表由不同的厂家的标准节流装置、差压变送器和流量积算仪组合,故使用灵活方便。
差压式流量计尤其适合测量高温、高压的饱和蒸汽蒸汽和过热蒸汽。但也有不足之处,如:安装较复杂,易泄漏,维修拆卸的劳动强度大;
量程比仅为3:1,压力损失大;使用中由于测量条件的变化,使工艺参数偏离了设计值,都会产生较大的测量误差。
2、涡街流量计
涡街流量计具有结构简单,不用导压管;测量范围大,量程比可达10:1;压力损失小等优点,在饱和蒸汽流量测量中占的比重在增加。
其安装难易程度与孔板相似,对直管段有一定的要求。
但也有不足之处,如:定期检定一般用户做不了,需要拆下送检;其稳定性受流速的影响,应力式涡街流量计对振动较敏感,易受管道或设备振动的影响而出现测量误差,其还受温度的限制,通常不能超过300℃(涡街流量计适合饱和蒸汽流量测量,不能用于过热蒸汽流量测量)。
还满足不了测量多相流,如湿度较大的饱和蒸汽。
3、旋翼式蒸汽流量计
旋翼式蒸汽流量计在中小企业饱和蒸汽测量中有广泛的应用,它是一种纯机械原理的测量仪表。
具有结构简单、牢固、维护量小;调整量程只需更换内孔板,并有人工调整的压力补偿功能,不用电源等优点。
但也有不足之处,如:直管段有一定的要求:管径的适应范围有限,只能水平位置安装;精度不高,只能就地人工抄表不便于计量管理。
4、线性孔板差压式流量计
线性孔板差压式流量计在企业中已有应用。它又称为弹性加载可变面积可变压头孔板,其流量与差压成线性关系。
其量程比可达100:1,很适合流量变化大的测量场合;测量准确度高,对直管段要求较低抗振动性能好等。
但也有不足之处,如:需要对每台仪表用水进行标定流体温度的变化,会导致流体密度的变化,也会导致管道内径、孔板直径及活塞几何尺寸的变化,而产生测量误差。
由于有可动部件,维修较复杂,孔板与活塞之间的缝隙很小,在仪表上游要安装过滤器,来避免管道中的杂质卡死活塞。
5、V锥流量计
V锥流量计测量原理与差压式流量计相同,也是一种节流式差压流量计。它采用边壁逐步收缩节流方式,即“变流体在管道中心收缩为边壁收缩”。
其对安装直管段要求极低,几乎不要求直管段;量程比可达10:1;压力损失只有孔板的1/3。
不怕振动,耐高温高压,可以进行饱和蒸汽和过热蒸汽测量,节流件几何尺寸可保持长期不变,能长期稳定工作而无须标定等。测量蒸汽流量时,变送器与流量计之间接专用三阀组,就不需再用导压管。
但也有不足之处,如仍然存在压力损失问题,对高温过热蒸汽测量时,仍需要安装冷凝器,或者把导管引长来保护仪表,测量蒸汽流量时,仍然需要进行温度、压力的补偿。
6、弯管流量计
弯管流量计就是一个具有固定几何尺寸、固定形状的弯头。其结构简单,没有任何附加件和节流件,因此基本没有压力损失。量程比可达10:1,精度高,测量装置免维护,寿命长,耐高温、耐高压、耐振动等。
但也有不足之处,如由于测量产生的差压较低,一般在3000Pa左右,所以对差压变送器的选择要求较高,测量蒸汽流量时,仍然需要进行温度、压力的补偿。
7、笛形均速管流量计
笛形均速管流量计是基于皮托管测速原理,它输出为差压信号,与测量差压的微差压变送器配套使用,可测量蒸汽、液体、气体的流量,其结构简单、压力损失较小、对上下游直管段的长度要求较短,安装方便,量程比可达10:1,耐高温高压,不受磨损影响、无泄漏等。
但也有不足之处,如现场安装条件要求高,其产生的差压较小,有的只有20-30Pa,必须配用高精度的微差压变送器;
由于结构的原因各取压口的流速不同,各取压孔之间存在一定的压差,取压孔之间就有介质的流动,有介质就有可能产生堵塞而产生测量误差;
被测流体在圆管中流动,因流体分离点不同,导致圆管在迎流流体时引起的压力分布不同,而造成流量系数不稳定,而造成流量不稳定。
1、蒸汽流量计的故障大多是流量计轴承磨损和叶轮被卡住,这类故障用户只需更换轴承或清除叶轮上的杂物即可解决。但是蒸汽流量计是装配严密的精密仪表,更换配件或是重新装配后都会引起仪表系数的变化,因此为保证测量的精度在更换配件或是重新装配后都应重新校验并更改仪表系数。
2、蒸汽流量计随运行的时间增长或更换部件其仪表系数会发生改变,因此必须要对蒸汽流量计进行校验。校验应注意两方面的问题:
a、校验所用流体介质必须和测量的介质为同一介质或粘度相近的介质;
b、如果蒸汽流量计是用于要求获得很高的测量精度的地方,校验时应连同流量计上下流的直管段作为一个整体进行校验,以消除蒸汽流量计前后直管段的附加误差。
1、当仪表的工作条件变换时(如变更介质、环境温度大幅度变化等),对仪表的零位应重新加以调整。同时,仪表的导管必须水平安装,要用水平仪校准。否则将增大工作条件变化对零位漂移的影响。机架更不可有震动或摇摆等情况故不宜在船舶上使用。
2、对相当于0—100kg/cm2压力、0~7标升/小时流量(空气)范围内的大量测试数据进行关联运算,用最小二乘法原理求直线回归方程,其相关系数λ值均在0、999~0、9999范围内,证明仪表具有良好的线性度。但线性度与量程大小有着流量越大,非线性越严重,所以一般把量程限定在0~4标升/时(空气)以内,以确保良好的线性度。为了能测量大流量而又保证线性度,可采用分流原理来扩展仪表的量程。如采取旁路管、文丘利管、孔板等配合使用,量程可分别扩大到每小时几十、几百、几千标升,直至几万标立方。
3、虽然真实气体的比热随压力的不同而有变化甚至某些气体的变动幅度还比较大,但仪表的测量精度仍能保持桂一定范围内。
4、导管材质的选择,除了考虑耐腐蚀性以外,以选用导热性能较好的材料为佳。以测目氮气为例,同样在0—100kg/cm2压力及0~7标升/小时流量的范围内测试,用镍管的测量精度为2~2、5%而用不锈钢的则为3~4%(镍的导热系数约为不锈钢的三倍)。
5、由于气体流量计必须在气体比热相对稳定的情况下才能进行正常工作所以凡是气体成分不稳定、气体中央带雾沫以及工作条件逼近气体的液化临界区等情况由于比热值很不稳定,均不宜使用这种仪表。如乙烯液化的临界点是50kg/cm2、9、9℃,在测试时发现压力超过30kg/cm2时,仪表读数就开始失稳了。
6、若改换了一种气体介质,重新进行标定。在仪表的说明书里,常介绍不重新标定,而仅根据两种气体的比热来换算未经标定的气体流量虽简单方便,但会造成较大的误差,尤其是在高压下工作时,我们发现仪表的灵敏度并不完全与比热成正比关表,更以重新标定为妥。
7、本仪表在使用前必须先开机预热,在未充分预热前,仪表上作不稳定。比较好的机型,其开机预热时间在两小时以内。
8、在使用过程中,当气体流量突然改变时,须通过热量的传送,管内温度重新分布,所以输出讯号的重新稳定需要一定的时间。为了能减小这种滞后现象,制造厂常在仪表的电气线路中加设微分网络,以使输出讯号快速反应。这在与其他仪表配合作流量自控时尤为必要。