合金分析仪是一种XRF光谱分析技术,可用于确认物质里的特定元素,同时将其量化。它可以根据X射线的发射波长(λ)及能量(E)确定具体元素,而通过测量相应射线的密度来确定此元素的量。XRF度普术就能测定物质的元素构成。 每一个原子都有自己固定数量的电子(负电微粒)运行在核子周围的轨道上。而且其电子的数量等同于核子中的质子(正电微粒)数量。从元素周期表中的原子数可以得知质子的数目。每一个原子数都对应固定的元素名称。能量色散X萤光与波长色散X萤光光谱分析技术特别研究与应用了最里层三个电子轨道即K,L,M上的活动情况,其中K轨道较为接近核子,每个电子轨道则对应某元素一个个特定的能量层。 在XRF分析法中,从X光发射管里放射出来的高能初级射线光子会撞击样本元素。这些初级光子含有足够的能量可以将最里层即K层或L层的电子撞击脱轨。这时,原子变成了不稳定的离子。由于电子本能会寻求稳定,外层L层或M层的电子会进入弥补内层的空间。在这些电子从外层进入内层的过程中,它们会释放出能量,称之为二次X射线光子。而整个过程则称为萤光辐射。每种元素的二次射线都各有特征。而X射线光子萤光辐射产生的能量是由电子转换过程中内层和外层之间的能量差决定的。特定元素在一定时间内所放射出来的X射线的数量或者密度,能够用来衡量这种元素的数量。典型的XRF能量分布光谱显示了不同能量时光子密度的分布情况。
热分析仪作为一种科学的实验仪器,在无机、有机、化工、冶金、医药、食品、塑料、橡胶、能源、建筑、生物及空间技术等领域被广泛应用。它的核心就是研究物质在受热或冷却时产生的物理和化学的变迁速率和温度以及所涉及的能量和质量变化。 热分析仪对塑料行业热稳定性(氧化诱导期)的测定 塑料是中国四大基础建材之一。我国是塑料制品的生产和消费大国。塑料在国民经济和日常生活中得到了广泛应用,市场空间十分广阔,尤其是电子电器、交通运输及建筑业的发展对塑料零部件和各种制品提出越来越高的要求,迫使塑料的产业升级和产品的更新换代,塑料实现高价比、节能、环保及使用安全。因此,塑料行业作为朝阳产业,仍有很大的发展空间。 需要特别关注的是,塑料材料在贮存、加工和日常使用中受光、热和氧气等的作用,极易引起高分子材料的老化反应,使材料的物理机械性能变坏,缩短使用寿命。因此在塑料的新产品开发和性能测试中正确评价抗氧剂添加的效果具有重要的意义。而氧化诱导时间和氧化诱导温度本身可作为高聚物热氧化稳定性的一种度量,近年来广泛被采用。随着测试技术和测试仪器的发展,采用差示扫描量热法(DSC)测定材料氧化诱导时间和氧化诱导温度已成为评价塑料热稳定性的重要方法。 热分析测定聚合物的氧化诱导时间和氧化诱导温度是加速老化实验之一。采用差示扫描量热法(DSC)可以方便快捷地测量塑料原料的氧化诱导时间和温度。将塑料试样与惰性参比物置于差热分析仪中,在氧气或空气气氛中,在规定的温度下恒温或以恒定的速率升温时,测定试样中的抗氧化稳定体系抑制其氧化所需的时间或温度。氧化诱导时间或温度是评价被测材料热稳定性的一种手段。
水中有机物的种类很多,目前还不能全部进行分离鉴定。
常以总有机碳(TOC)表示。
TOC是一个快速检定的综合指标,它以碳的数量表示水中含有机物的总量,通常作为评价水体有机物污染程度的重要依据。
但由于它不能反映水中有机物的种类和组成,因而不能反映总量相同的总有机碳所造成的不同污染后果。
总有机碳的测定采用燃烧法,能将有机物全部氧化,比BOD或COD更能反映有机物的总量。
TOC分析仪测定的两种方法:
直接测定法:
将水样预先酸化,通入氮气曝气,驱除各种碳酸盐分解生成的二氧化碳后再注入仪器测定。
曝气过程中由于挥发性有机物的损失会造成误差,故测定结果为不可吹出有机物的碳值。
差减法:
将同一等量水样分别注入高温炉(900 ℃ )和低温炉(150 ℃ ),则水样中的有机碳和无机碳均转化为二氧化碳,低温炉的石英管中有机物不能被分解氧化。
将高、低温炉中测得的总碳(TC)和无机碳(TC)二者之差即为总有机碳(TOC)。
总有机碳分析仪(TOC)采用高温燃烧法,将样品内不同形式的碳氧化为二氧化碳,zui后采用新型非色散红外检测器(NDIR)进行定量检测。
广泛用于河流、湖泊、水库等环境水中有机污染物的分析与监测,工业废水、污水处理厂的水质管理,环保、高校、科研等领域的研究分析,化工、半导体工业、制药工业、超纯水系统、核电等领域的纯水及回收管理。