目前酸度计种类、型号很多,但基本构造都相似,都主要由指示电极、参比电极、被测液、导线连接组成一个原电池装置,工作装置如下图所示。
1.参比电极 在工作电池中,电位恒定不变的电极称为参比电极。参比电极是决定指示电极电位的重要因素。精确的参比电极是标准氢电极,但于其制作比较麻烦,实际应用不多。常见的参比电极是甘电极和银-氯化银电极。 (1)甘汞电极是由汞(Hg)和甘汞的糊状物装入一定浓度的溶液中构成的。 甘汞电极(参比电极)的特点是电位值固定不变,其电极反应式如下:
电位在t=25℃时表达式为:
其中为标准甘汞电极电位值。由上式可知,当t一定时,甘汞电极的点位值取决于KC1溶液中CI-浓度。C1-汞电极中氯化钾溶液常用的浓度有三种,每种对应的甘汞电极的电极电位如下:
(2)银-氯化银电极 也是一种广泛应用的参比电极,它是将银丝表面镀上一层氯化银,侵入到用氯化银饱和的一定浓度的氯化钾溶液中,其电极反应为:
由上式可知,当l一定时,银-氯化银电极的点位置也取决于KC1溶液中的C1-浓度,银-氯化银电极中氯化钾溶液常用的浓度有三种,每种浓度对应的银-氯化银电极的电位如下:
2.指示电极 指示电极的电位随待测离子的浓度的变化而改变。为避免共存离子的干扰,要求指示电极对其响应离子应具有较高的选择性。另外,指示电极还应具有灵敏度高、测量浓度范围宽、响应速度快等特点。按结构和原理的不同,可将指示电极分为金属-金属离子电极、金属-金属难溶盐电极、惰性金属电极和离子选择性电极等。在直接电位法测定溶液pH中,常见的是离子选择性电极中的pH玻璃电极。 (1)pH玻璃电极的构造如图所示。它的主要部分是一个玻璃泡,泡的下半部为特殊材料组成的玻璃薄膜。膜厚为30~100μm。在玻璃泡中装有O.lmol/LHCl溶液作为内参比溶液(或称为内充液),内充液中插入一根银-氯化银电极作为内参比电极。内参比电极的电位是恒定的,与被测溶液的PH无关。玻璃电极作为指示电极,其作用主要在玻璃膜上。
(2)膜电位当玻璃电极作为指示电极浸人被测溶液时,玻璃膜处于内部溶液和试样溶液之间,这时跨越玻璃膜产生一电位差△EM,这种电位差称为膜电位,它与氢离子活度之间的关系符合能斯特公式:
(3)不对称电位由式可见,当ch试=ch内时,厶EM应为零。但实际上测量表明并不等于零,跨越玻璃膜仍存在一定的电位差,这种电位差称为不对称电位。当玻璃电极在水溶液中长吋间浸泡后,可使不对称电位达到恒定值,合并于式的常数K中。 (4)玻璃电极的电位玻璃电极具有内参比电极,通常是银-氯化银电极,其电位是恒定的,与待测pH无关。所以玻璃电极的电位值应是内参比电极和膜电位之和。 玻璃电极的优点是对H+有高度的选择性,使用范围广,不受氧化剂、还原剂影响,适用于有色、浑浊或胶态溶液的pH测定及具有响应快(达到平衡快)、不沾污试液的特点。但由于膜太薄,不能用于含F-的溶液,并且电极电阻高。玻璃电极的pH测量范围一般为1~10。当试液PH<1时,测量结果偏高,称为“酸差”。当试液pH>10时,测量结果偏低,称为“碱差”或“钠差”。
PH酸度计的级别和仪器的准确度是不同的两个概念,仪器级别与其准确度并不完全一致。
酸度计的级别是按其指示器(简称电计)的分度值(分辨率或最小显示值)表示的;
例如:分度为0.1pH的仪器称为0.1级仪器;最小显示值为0.001pH的仪器称为0.001级仪器,等等。
而仪器的准确度是电计与电极配套测试标准溶液的综合误差;
它不仅与电计有关,而且与玻璃电极和参比电极更有关。
从实际使用要求出发,电计的分度值为0.1~0.001pH,如果有必要的话;
依当前的科技水平,完全可以制作出更精密的电计。
但是,由于结构和制造等方面的原因,常用电极的性能还不能达到完全理想的程度。
玻璃电极的重复性误差和参比电极的溶液接界电势稳定性都不优于0.01pH。
因此,电计的分辨率再高,仪器测试准确度都难优于0.01pH。
但是,选择高分辨率的仪器可以最大限度地克服或消除电计对测试误差的影响。
由于要使电计达到满意的精度已不成问题;
所以都在仪器的智能化,人性化,可靠性,操作简便以及性价比等方面不断创新和提高。
酸度计的级别与其测试准确度的关系在酸度计国家计量检定规程(JJG119-84)中规定如下:
PH酸度计仪器的级别0.2级、0.1级、0.02级、0.01级、0.001级
分度值或最小显示值(pH)0.2、0.1、0.02、0.01、0.001
电计示值误差(pH)±0.1、±0.05、±0.01、±0.01、±0.002
配套测试示值总误差(pH)±0.2、±0.1、±0.02、±0.02、±0.01