气相色谱仪的色谱分析包括色谱定性分析和定量分析:
1,气相色谱仪的分析依据:气相色谱主要功能不仅是将混合有机物中的各种成分分离开来,而且还要对结果进行定性及定量分析。所谓定性分析就是确定分离出的各组分是什么有机物质,而定量分析就是确定分离组分的量有多少。色谱在定性分析方面远不如其它的有机物结构鉴定技术,但在定量分析方面则远远优于其它的仪器方法。 有机物进入气相色谱后得到两个重要的测试数据:色谱峰保留值和面积,这样气相色谱可根据这两个数据进行定性定量分析。色谱峰保留值是定性分析的依据,而色谱峰面积则是定量分析的依据。
2,气相色谱仪定性分析方法:气相色谱的定性分析方法主要有保留值定性法、化学试剂定性法和检测器定性法。气相色谱的保留值有保留时间和保留体积两种,现在大多数情况下均用保留时间作为保留值。在相同的仪器操作条件和方法下,相同的有机物应有同样的保留时间,即在同一时间出峰。但必须注意:有同样保留时间的有机物并不一定相同。 气相色谱保留时间定性分析方法就是将有机样品组分的保留时间与已知有机物在相同的仪器和操作条件下保留时间相比较,如果两个数值相同或在实验和仪器容许的误差范围之内,就推定未知物组分可能是已知的比较有机物。但是,因为同一有机物在不同的色谱条件和仪器中保留时间有很大的差别,所以用保留时间值对色谱分离组分进行定性只能给初步的判断,多数情况下还需要用其它方法作进一步的确认。一个常用的确证方法是将可能的有机物加到有机样品中再进行一次气相色谱仪分析,如果有机样品中确含已知有机物的组分,则相应的色谱峰会增大。这样比较两次色谱图峰值的变化,就可以确定前期初步推断是否正确。
3,气相色谱的定量分析方法:如果不配置质谱仪等专用定性的仪器联胜,其本身并不能真正定性,因为气相色谱、液相色谱等色谱法本身的原理只是通过色谱柱将待测物质组份进行分离后再通过检测器进行检测,而且常用的FID,TCD,ECD,FPD等检测器本身并不能定性,只能进行相对定量检测计算;之所以说气相色谱可以定性,那是是一种对照判断式定性,就是将通过在相同的色谱分析条件下在相同时间段内出现的峰认定为同一种物质。这种认定一般对已经物质的定性是准确的,但对未知物质和同分异构体是无法分别的;气相色谱仪分析根据定量对照计算方法的不同分为:归一法,校正归一法,内标法,外标法等常用方法。
气相色谱仪在进样后,检测器没有信号输出。遇到这种情况,应当按照样品、信号连接、进样针、进样口、检测器、色谱柱、气路的顺序逐一排查。
造成气相色谱仪检测器无信号的原因很多,如信号线连接、进样系统、分离系统、检测器自身的问题、色谱工作站等。
1、样品未注入,由于注射器针头堵塞、进样口硅胶垫漏气等导致样品未进入分离系统;
2、载气、氢气、空气等气路连接是否正确;
3、色谱柱与进样口和检测器链接是否正常;
4、色谱工作站采集器与计算机数据传输接口是否链接正常;
5、检测器是否选择正确,信号线连接是否正常;
6、色谱柱温度、进样器温度、检测器温度是否正常;
7、色谱工作站采集器是否打开,色谱软件设置是否正确;
8、检测器是否正常开启,参数设置是否正确;
9、色谱柱是够出现断裂漏气情况;
10、检测样品浓度是否过低等。
气相色谱仪解决方案
1、信号连接及采集部分查看检测器输出信号线是否松脱,即确认检测器输出信号线与色谱工作站采集器的输入端连接是否正常。确保色谱工作站采集器输出端与计算机USB(或COM)接口连接正常,工作站通道选择正确。
2、样品部分首先确认样品含需要检测的目标物,浓度配制是否正确。
3、检测器部分确定检测器的选择正确,确保所检测的目标物在所选择的检测器上有响应。检查确认检测器的温度、电流等参数设置正确。FID、FPD.NPD要检查氢气和空气及点火状况,ECD要检查电流是否设置正确,ECD、NPD要检查尾吹气设置是否正确,FPD要检查S、P滤光片是否安放正确。
4、进样部分确认样品是否正确注入,进样针有无堵塞;检查进样口硅胶垫是否老化漏气,确认衬管是否过脏需要更换。
5、色谱柱部分检查确认色谱柱与进样口和检测器连接正确,检查色谱柱是否出现断裂漏气等情况。
6、气路部分检查确认载气、空气、氢气等气路是否连接正确,气流大小设置是否正确,有无漏气等情况。
1、分离不完全
(1)几个峰重叠,分离不开。处理方法:降低载气流速.减少进样量,降低柱温。对于原来能完全分离一段时间后便不能完全分离的,表明固定液已流失,色谱柱寿命已终,需要更换固定液。
(2)分离时间太长使晚馏出的峰平。处理方法:可以通过提高柱温来解决。
(3)检测器灵敏度太低,使含量少的组分检测不出来。处理方法:可以通进样量,提高检测器灵敏度来解决。
2、峰形不规则
(1)出现拖尾峰。处理方法:采用强极性固定液,消除担体活性以及提高柱温来解决。
(2)出现平顶形或峰。处理方法:通过减少进样量、提高柱温和载气流速来解决。另外当放大器输入饱和时也会形成平顶峰。
3、检测器造成的影响
以TCD为例热导检测器TCD利用载气和被测气体的热导率不同,检测桥路中产生的不平衡电压与被测组分浓度成正比,以实现被测组分的测量。
(1)TCD检测器被污染基线漂移或出现阶型基线,并可能出现高噪音。
(2)TCD热阻丝被烧断,基线降为零点。
(3)TCD电源供应不稳定,出脉冲干扰峰。
4、载气的影响
载气携带分析样品流过固定相,分离后的气体随时间先后逐一被载气携带出色谱柱,送往检测部分检测。载气的流量、载气的性质及载气压力的影响等操作条件会影响色谱分离效能。
(1)量偏低,会引起保留时间增长,灵敏度降低或出现圆顶峰、拖尾峰。
(2)载气流量偏高,会引起高噪音或组分分离不载气控制不稳,造成不规则基线漂移或波状基线漂移。
以上情况应检查减压阀是否超过使用范围,必要时应更换减压阀,然后再检查载气是否存在漏气等。
5、电路问题
电路故障一般较容易判断,如电源不启动,检测器、进样口不加热,恒温箱不能恒温等。若基线出现正弦波,则是由于放大电路故障引起;处理方法一般更换损坏的电子元件。
其他在日常分析中还会碰到上述不曾讨论的问题,如氢焰检测器点不着火,首先要确定是否已开氢气和空后确认点火线圈是否好用,若这3个条件都具备还是点不着火,则可能是检测器与色谱柱接头处漏气;对于出现倒峰的况可能是主机或处理机的极性接反了,遇到这种情况,可先检查仪器的极性;对出现进样量与积分面积不符的情可能把输出信号线连接错了。