差示扫描量热仪主要用于测量材料内部热转变相关的温度、热流的关系,应用范围非常广,特别是材料的研发、性能检测与质量控制。
材料的特性,如玻璃化转变温度、冷结晶、相转变、熔融、结晶、产品稳定性、固化/交联、氧化诱导期等,都是差示扫描量热仪的研究领域。
为保证差示扫描量热仪正常使用,样品在测试温度范围内不能发生热分解,与金属铝不起反应,无腐蚀。
被测量的试样若在升温过程中能产生大量气体,或能引起爆炸的都不能使用该仪器。因此,测试前应对样品的性质有大概了解。
1.差示扫描量热仪不得使用硬物清洁样品托及实验区,以免对仪器造成不可逆损害。
2.检查差示扫描量热仪所有连接是否正确,所用气体是否充足,工具是否齐全。
3.试验中,若选择铝坩埚为样品皿,试验的最高温度不可超过550℃。若实验中最高温度超过550℃,则可选用陶瓷坩埚。
4.实验室室温控制在20℃-30℃,温度较为恒定的情况下实验结果精确度和重复性较高。室温较高的情况下需开空调以保证环境温度在短期内相对恒温。
5.为确保试验结果的准确性,使用仪器时先空烧(不放任何样品和参比物)30分钟左右。
6.仪器长时间不用,再次使用时,务必空烧两到三次,可以将:温度设为400℃,速率设为10℃/min,恒温设为0min,按【运行】键。
7.差示扫描量热仪坩埚底要平,无锯齿形或弯曲,否则传热不良。
8.试样用量要适宜,不宜过多,也不宜过少。固体样品一般为20mg左右。液体样品不超过坩埚容量的三分之二。如样品用量另有要求,根据要求确定用量。
9.制备DSC样品时,不要把样品洒在坩埚边缘,以免污染传感器,破坏仪器。坩埚的底部及所有外表面上均不能沾附样品及杂质,避免影响实验结果。
10.对于无机试样可以事先进行研磨、过筛;对于高分子试样应尽量做到均匀;纤维可以做成1——2mm的同样长度;粉状试样应压实。
11.坩埚放在支持器中固定位置上,试样用量少时要均匀平铺在坩埚底部,不要堆在一侧;若试样是颗粒,需要放在坩埚中央位置。
12.差示扫描量热仪不要在采集数据的过程中调节净化气体的流量,因为气体流量的轻微改变会对DSC曲线产生影响。
13.升温速率一般情况下选择10--20℃/min。过大会使曲线产生漂移,降低分辨力;过小测定时间长。
14.如果实验区有灰尘或其他粉末状杂物应使用洗耳球吹干净,慎用嘴吹而迷眼。
15.实验区污染严重时,可以将:温度设为500℃,速率设为20℃/min,恒温设为0min,按【运行】键。
16.采集数据的过程中应避免仪器周围有明显的震动,严禁打开上盖,轻微的碰及仪器前部就会在DSC曲线上产生明显的峰谷。
17.差示扫描量热仪断开数据线,关闭仪器之前必须先关闭软件。以防止联机、通讯失误。(此问题在XP、SP3系统中会发现,其他系统未试验过)。
18.电源:AC220V,50HZ,功耗>2000W。
19.实验结束后,千万小心DSC的炉盖,用镊子轻拿轻放,避免被烫或者炉盖损坏。
仪器网-专业分析仪器服务平台,实验室仪器设备交易网,仪器行业专业网络宣传媒体。
相关热词:
等离子清洗机,反应釜,旋转蒸发仪,高精度温湿度计,露点仪,高效液相色谱仪价格,霉菌试验箱,跌落试验台,离子色谱仪价格,噪声计,高压灭菌器,集菌仪,接地电阻测试仪型号,柱温箱,旋涡混合仪,电热套,场强仪万能材料试验机价格,洗瓶机,匀浆机,耐候试验箱,熔融指数仪,透射电子显微镜。
差示扫描量热仪测量的是与材料内部热转变相关的温度、热流的关系,应用范围非常广,特别是材料的研发、性能检测与质量控制。对于本机的使用,安全要始终放在第一位: 差示扫描量热仪操作安全事项 1、确保所有插座电缆接地良好。 2、不得使用腐蚀性或可燃性的气体吹扫仪器。 3、当测量仪器温度高于100℃时,绝不要断开仪器电源。冷却风扇会因此关闭。 4、不得使用易形成爆炸气体混合物的气体。 5、炉内必须保持清洁,放置和取出样品时避免硬器碰及炉底。 6、不要触碰炉体、炉盖或刚从炉体中拿出的样品。炉体温度可能高达500℃或700℃,必须使用镊子移动。 7、坩锅必须加盖,除非有特殊的测试要求。 8、关闭电源前,要取出最后的样品坩埚。 9、不得独自搬动仪器,DSC1重达30公斤。 10、仪器出现异常,应及时与供应商联系,不得擅自拆卸仪器和维修。
随着人们对高分子材料结构与性能研究的不断深入,材料的质量控制技术也日益受到重视。
在产品开发和生产的过程中,热分析方法是控制产品质量的一种非常有效的手段;
而差示扫描量热仪(DSC)是常用的热分析技术之一,它测量材料由于物理化学变化而发生的焓变与温度或时间的关系;
此方法具有操作快捷,简便、可靠的特点,在高分子材料研究领域发挥着巨大的作用。
差示扫描量热仪使样品处于一定的温度程序(升温/降温/恒温)控制下,观察样品端和参比端的热流功率差随温度或时间的变化过程;
以此获取样品在温度程序过程中的吸热、放热、比热变化等相关热效应信息;
计算热效应的吸放热量(热焓)与特征温度(起始点,峰值,终止点和峰面积)等参数的仪器。
DSC方法广泛应用于塑料、橡胶、纤维、涂料、粘合剂、医药、食品、生物有机体、无机材料、金属材料与复合材料等各类领域;
可以研究材料的熔融与结晶过程、玻璃化转变、相转变、液晶转变、固化、氧化稳定性、反应温度与反应热焓;
测定物质的比热、纯度,研究混合物各组分的相容性,计算结晶度、反应动力学参数等。
下一篇:恒温水浴的操作使用及注意事项