压缩机有很多种类,但是在检测设备上主要应用于盐水喷雾试验机、高低温试验箱、耐候试验设备等设备。下面我们就以盐水喷雾试验机为例来说说制冷压缩机的特别之处,各位可得仔细看咯。
制冷压缩机是制冷系统的核心耗能部件,提高制冷系统效率的*直接有效手段是提高压缩机的效率,它将带来系统能耗的显著降低。同时这样还能避免仅在系统上采集。
标准 Q/Y B00J02.02
采取措施(如一味加大换热器面积等)所造成的材料消耗的大量增加。随着世界上能源紧缺形势的日益严重,各个国家越来越重视节能工作、对耗能产品的效率提出了越来越高的要求。
盐水喷雾试验机由于各种损失,诸如摩擦、泄漏、有害传热、电机损失、流动阻力、噪声振动等因素的存在,压缩机工作时实际效率远低于理论效率。因此,从理论上讲,任何能够降低任意一种损失的措施都能够提高压缩机的效率。这一客观事实导致了对压缩机的节能研究范围广、方向宽,研究课题与研究成果多种多样。
国际上对压缩机的节能研究工作主要集中在几个方面:研究润滑特性、压缩机轴承部位的摩擦特性以降低摩擦功耗、提高压缩机效率;降低泄漏损失以提高压缩机的效率;采用变频或变容技术通过制冷系统的出力与用户负荷的*佳匹配来实现节能,有关这方面的内容特别是变频技术已相对较为成熟且广为人知。
气阀的研究是一个古老的课题但也是一个永恒的课题,改进盐水喷雾试验机气阀的设计以提高压缩机效率的研究永无止境也永有收获。这方面的研究非常之多,从气阀材料、运动规律、结构优化到适用理论、测试方法等包罗万象。总之,关于压缩机节能方面的研究已成为制冷行业的一个首要热点问题。
制冷压缩机在蒸汽压缩式制冷系统中,把制冷剂从低压提升为高压,并使制冷剂不断循环流动,从而使系统不断将内部热量排放到高于系统温度的环境中。制冷压缩机是制冷系统的心脏,制冷系统通过压缩机输入电能,从而将热量从低温环境排放到高温环境。制冷压缩机的能效比决定整个制冷系统的能效比。由于环境温度是经常变化的,故压缩机大部分时间是出于部分负荷状态,因此压缩机要具有能量调节。
螺杆式压缩机没有活塞式压缩机所需的气缸,活塞、活塞环、汽缸套等易损部件,机器结构紧凑,体积小,重量轻,没有余隙容积,少量液体进入机内时无液击危险。可利用盐水喷雾试验机活阀进行10%~100%的无级能量调节,适用范围广,运行平稳可靠,需检修周期长,无故障运行时间可达(2~5)×104h。由于使用润滑油使机器的冷却使用和密封性能得到改善,排气温度降低,即使蒸发温度较低(-40℃)和压缩比较高(25左右),仍然可以单级运行,即在一定范围内可以代替两级压缩循环。但是,螺杆式制冷压缩机的加工和装配要求精度较高,不适宜于变工况运行,有较大的噪音,在一般情况下,需装置消音和隔音设备,在制冷压缩时,需要喷加润滑油,因而需要油泵、油冷却器和油回收器等较多辅助设备。
在压缩机壳体外侧封闭联通一个Helmholtz共鸣器,即由Helmholtz共鸣器的腔室通过孔颈与压缩机壳体内部空腔相连成,以降低压缩机腔内受激声学模态的幅值。将共鸣器共振频率调制到实际盐水喷雾试验机的*大受激振动模式上,会大幅降低共振峰值和导致响应频谱的显著改变。但是这样会影响压缩机外观和在冰箱中的布置,其研究结果尚未应用于产品中。
压缩机作为跨临界二氧化碳空调系统效率及可靠性影响*大的部件,应当充分结合二氧化碳超临界循环具体特点重新进行设计。CO2和氨一样,其绝热指数K 值较高,达1.30,这可能会使压缩机排气温度偏高,但由于CO2需要的压缩机的压比小,因此不需要对压缩机本身进行冷却。正因为绝热指数高,压比小,可减小压缩机余隙容积的再膨胀损失,使压缩机容积效率较高。盐水喷雾试验机经过实验和理论研究,Jurgen SUB和Horst Kruse发现,往复式压缩机有良好的油膜滑动密封,成为CO2系统的优选。BOCK对其二氧化碳压缩机排气阀进行了改进,排气改良后的二氧化碳压缩机效率提高了7%。
剩余润滑油量和电机端线圈绕组也会导致同种型号成批压缩机声级之间存在差异(偏离声级平均值)。通过改变壳体外部支承来增加扭转刚度,且减小振动面;噪声研究的复杂性要求研究者具有较强的理论素质、要求企业具有较好的技术基础、并且需要较大的投资和较长的时间。这方面是中国压缩机企业的薄弱环节之一,基本上处于定性的实验研究阶段,伴随着很大的随意性和偶然性。
基于盐水喷雾试验机环保要求的新制冷剂的应用也是制冷压缩机行业的一个热点问题,随着用于冰箱产品的R22制冷剂替代工作的结束,新制冷剂压缩机的研究主要集中在空调行业。除了已比较成熟的R410A、R407C方面的研究外,*大的热点问题是二氧化碳压缩机的研究。由于二氧化碳系统压力远远大于传统的压临界循环系统,压缩机的轴封设计要求比原有压缩机高得多,压缩机的轴封泄漏在一段时间内仍将是阻碍其实用化的主要原因。
阅读以上文章,您对于东莞赛思检测设备有限公司购买的制冷压缩机是否了解了一点呢?如果仍有疑问请致电我们的客服专线,我们将24小时为您服务,在您需要的**时间给你*好的咨询与服务。
快速温变试验箱 技术规格:
型 号 | SES-225 | SES-408 | SES-800 | SES-1000 | SES-1500 |
内箱尺寸 (W x D x H cm) | 50×60×75 | 60×80×85 | 80×100×100 | 100×100×100 | 100×100×150 |
外箱尺寸 ( W x D x H cm) | 115×125×160 | 125×145×170 | 145×195×185 | 155×225×195 | 250×125×190 |
承载重量 | 20kg | 30kg | 30kg | 50kg | 75KG |
温度速率 | 等均温/平均温5℃/min、10℃/min、15℃/min、20℃/min。 | ||||
温度范围 | -70℃~﹢180℃ | ||||
温度均匀度 | ≤2℃ | ||||
温度波动度 | ±0.5℃ | ||||
温度偏差 | ±2℃ | ||||
温变范围 | -40℃/-55℃~+125℃(高温至少+85℃以上) | ||||
湿度范围 | 20%~98% | ||||
湿度偏差 | ±3%(>75%RH), ±5%(≤75%RH) | ||||
脚轮 | 4个(外形尺寸不含脚轮)脚轮增高50~120mm | ||||
观察窗 | 450×450mm带加热装置防止冷凝和结霜 | ||||
测试孔 | φ100mm位于箱体右侧(人面朝大门) | ||||
照明灯 | 35W/12V | ||||
节能调节方式 | 冷端PID调节方式(即加热不制冷,制冷不加热),比平衡调温方式节能40% | ||||
加热方式 | 镍铬合金电热丝(3重超温保护) | ||||
制冷机 | 德国原装进口品牌压缩机 | ||||
制冷剂 | 环保制冷剂R404a / R23(臭氧耗損指數均為0) | ||||
冷却方式 | 水冷(水温7℃~28℃,水压0.1~0.3Mpa),以便确保降温性能 | ||||
控制器 | 7寸彩色触摸屏控制器 | ||||
运行方式 | 程式运行+定值运行 | ||||
传感器 | PT100 | ||||
通讯功能 | RS485 标配USB | ||||
曲线记录功能 | 触摸屏自动记录 | ||||
电源 | 380V±10%/50HZ,三相四线+地线(3P+N+G) |
恒温恒湿试验箱压缩机卡死这类故障约占全部故障20%。大多数情况下,单相压缩机有这类故障,约占同类故障的40%。对大冷量压缩机而言,此类故障意味着由于电机功率引起的损坏和磨损,恒温恒湿试验箱压缩机卡死主要原因如下:1、液态冷媒转移到压缩机壳体;2、在特殊运转情况下缺油;3、起泡;4、回液;5、怀疑系统清洁度。
1、液态冷媒转移:
这是对卡死或机械磨损最通常的原因。压缩机停机期间,这种转移总会发生,因为压缩机是系统内的最冷的地方。冷冻油与或多或少的冷媒根据压力与温度关系以及冷媒、冷冻油的性质互相混合。这样,油位就上升。油内冷媒超过饱和,液态冷媒就沉到壳体最下部,因为冷媒与油、冷媒混合物相比较,密度较大。在压缩机起动时,油泵不仅仅抽油,而且抽出液态冷媒,或是油/冷媒混合物,后二不是一种良好的润滑剂,因而形成机械部件的卡住或磨损。发生这种故障时,可以发现液体冷媒界位线。压缩机卡死时,电机绕组浸在液体内,因此过载保护器不会跳开。结果油在表面发生炭化,在壳体表面或是机械部件表面上表现出来。为避免此类问题,建议如下:1、确保回气过热度,使在任何运转工况下不可能形成异常冷却或安装一个吸气管储液器。2、使用曲轴箱加热器,确保压缩机比系统内其他部件的温度为高。
2、缺油:
压缩机留有50%的原始加油量,即认为是缺油故障。根据许多压缩机的分解,发现油可能由于短时间内的起泡而被吸出压缩机(特别是短管路系统)。这些油再回到压缩机需要较长的时间,因而引起压缩机磨损。这种现象也可以解释有些分解压缩机的油位超过50%,但比原始油量少,它也出现问题。
3、起泡:
它表示润滑压缩机的油不够。除此之外,油/冷媒混合物又不是良好的润滑剂。因此机械磨损,有时是活塞/曲轴磨损在分解压缩机时被发现。(注:起泡现象一般在压缩机非常低的噪声情况下发生。因为泡沫在压缩机内部和周围起到一个声屏障的作用。)
4、回液:
起初,很难建立压缩机卡死和回液之间的关系。液态冷媒处于气缸中的前部位置。液击是试图增压液体造成的结果。当活塞处于压缩周期的终点时:会产生存在过量的油(泡沫状态)或过量的液态冷媒(很少可能)。其后果如下:—吸气阀的破损;—垫片破损;—润滑不良引起卡死;—多种损坏的组合。
5、清洁度:
如果微小粒子或粘性粒子附在运动零件上,即会形成压缩机卡死或部件的显著磨损。因此,建议一定要保证系统内任何装配部件以及管路准备的清洁度。特别是部件的打磨(管路、蒸发器)和清刷都很干净。
双螺杆式制冷压缩机机组主要由压缩机、油分离系统、润滑油系统、经济器组成。螺杆式制冷压缩由一对相互啮合的按一定传动比反向旋转的螺旋形转子。
制冷压缩机维护保养
1、故障现象:机组排气温度高(超过100 ℃) 机组冷却剂液位太低(应该从油窥镜中能看到,但不要超过一半); 油冷却器脏;油过滤器芯堵塞;温控阀故障(元件坏);断油电磁阀未得电或线圈损坏;断油电磁阀膜片破裂或老化;风扇电机故障;冷却风扇损坏;排风管道不畅通或排风阻力(背压)大;环境温度超过所规定的范围(38℃或 46℃);温度传感器故障(控制机组);压力表是否故障(继电器控制机组)。
2、故障现象:机组油耗大或压缩空气含油量大 冷却剂量太多,正确的位置应在机组加载时观察,此时油位应不高于一半;回油管堵塞;回油管的安装(与油分离芯底部的距离)不符合要求;机组运行时排气压力太低;油分离芯破裂;分离筒体内部隔板损坏;机组有漏油现象;冷却剂变质或超期使用。
3、故障现象:机组压力低 实际用气量大于机组输出气量;放气阀故障(加载时无法关闭);进气阀故障;液压缸故障;负载电磁阀(1SV)故障最小压力阀卡死;用户管网有泄漏;压力设置太低;压力传感器故障(控制机组);压力表故障(继电器控制机组);压力开关故障(继电器控制机组);压力传感器或压力表输入软管漏气;
4、故障现象:机组排气压力过高 进气阀故障;液压缸故障;负载电磁阀(1SV)故障;压力设置太高;压力传感器故障(Intellisys控制机组);压力表故障(继电器控制机组);压力开关故障(继电器控制机组)。
5、故障现象:机组电流大 电压太低;接线松动;机组压力超过额定压力;油分离芯堵塞;接触器故障;主机故障;主电机故障;
6、故障现象:机组无法启动 熔断丝坏;温度开关坏;接线松开;主电机热继电器动作;风扇电机热继电器动作;变压器坏;无电源输入(控制机组);故障未消除(控制机组);控制器故障。
7、故障现象:机组启动时电流大或跳闸 用户空气开关问题;输入电压太低;星-三角转换间隔时间太短(应为10 ~ 12 秒);液压缸故障(没有复位);进气阀故障(开启度太大或卡死);接线松动;主机故障;主电机故障;1TR时间继电器坏(继电器控制机组)。
8、故障现象:风扇电机过载 风扇变形;风扇电机故障;风扇电机热继电器故障(老化);接线松动;冷却器堵塞;排风阻力大。
维护保养指南螺杆机维护保养指南。每日保养内容。每月保养内容。每季度保养内容。每年保养内容。 注意事项 每日保养内容:
1.检查空滤芯和冷却剂液位;
2.检查软管和所有管接头是否有泄漏情况;
3.检查记录,如果易耗件已经到了更换周期必须停机予以更换;
4.检查记录,当主机排气温度达到或接近98°C,必须清洗油冷却器;
5.检查记录,若发现分离器压差达到0.6BAR以上(极限1BAR)或压差开始有下降趋势时应停机更换分离芯;
6.检查冷凝水排放情况,若发现排水量太小或没有冷凝水排放,必须停机清洗水分离器;
每月保养内容:
1.检查油冷却器表面,必要时予以清洗;
2.清洗后冷却器;
3.清洗水分离器;
4.检查所有电线连接情况并予以紧固;
5.检查交流接触器触头;
6.清洁电机吸风口表面和壳体表面的灰尘;
7.清洗回油过滤器;
每季度保养内容:
1.主电机加注润滑脂;
2.清洁主电机和风扇电机;
3.更换冷却剂;
4.更换油过滤芯;
5.清洁油冷却器;
6.检查最小压力阀;
7.检查传感器。
每年保养内容:
1.更换冷却剂(Ultra Coolant);
2.检查止逆阀;
3.检查冷却风扇;
4.检查液压缸或步进电机和步进限位装置;
5.安全阀校准(送劳动局指定单位强制检验)。
制冷压缩机在前500小时运行过程中应注意润滑油情况,首次主机启动后细心观察油温和油压变化,如油变色则必须换油,一直到系统清洁为止,每次换油时应更换或清洗油过滤器、吸气过滤器及回油过滤器中的滤网。