X
你好,欢迎来到仪多多。请登录 免费注册
仪器交易网
0我的购物车 >
购物车中还没有商品,赶紧选购吧!

安森美半导体高能效智能电表电源方案 半导体技术指标

时间:2020-07-29    来源:仪多多仪器网    作者:仪多多商城     
近年来,世界各国均发展智能电网,智能电表在这应用中发挥关键作用,可以使用户与电力系统之间实现互动,如一方面帮助电力机构精确了解用户的用电规律,为高峰用电或低谷用电设定差异化的电价;另一方面,用户也可以调整自己的用电计划,节省电费支出。

从智能电表的组成来看,主要包括通信、电源及电源管理、计量及存储等功能模块。安森美半导体身为应用于高能效电子产品的首要高性能硅方案供应商,提供应用于智能电表各个功能模块的丰富解决方案,如PLC调制解调器和线路驱动器、放大器、稳压、监控、电压保护、温度传感器、实时时钟、存储器、LCD背光、I/O接口、智能卡接口和I/O扩展器等。

其中,就电源及电源管理模块(参见图1)而言,安森美半导体亦提供丰富的产品选择,包括高压交流-直流(AC-DC)开关稳压器、直流-直流(DC-DC)开关稳压器/控制器和低压降(LDO)线性稳压器等(参见表1),方便用户根据具体应用选择适合的方案。这些电源方案具有高能效、低能耗及丰富保护特性等特点,非常适合智能电表应用。


图1:智能电表电源及电源管理模块框图

表1:安森美半导体应用于智能电表电源及电源管理模块的器件列表

提供高能效及低待机能耗的AC-DC开关稳压器

如表1所示,在交流-直流电源转换部分,可以选用安森美半导体的一系列开关稳压器,如适合低功率应用的NCP1010/1/2/3/4自供电单片开关稳压器、适合中等功率应用的NCP1027高压单片开关稳压器,以及高压门控开关稳压器NCP1050/1/2/3/4/5等。

以NCP101x为例,这系列器件集成了固定频率电流模式控制器及典型导通阻抗为11或22 Ω的700 V MOSFET,提供构建强固及低成本开关电源所需的全部特性,包括软启动、频率抖动、短路保护、跳周期、最大峰值电流设定点及动态自供电(不需要辅助绕组)等。在正常负载工作期间,NCP101x以65、100及130 kHz中的某一频率开关;而当电流设定点降到低于某个给定值(如输出功率需求消失)时,NCP101x自动进入所谓的跳周期模式(在此模式下跳除不需要的开关周期),从而提供极佳的轻载能效。由于进入跳周期模式通常发生在最大峰值电流的1/4时,故没有可听噪声产生。因此,待机能耗降至最低,且没有可听噪声产生。NCP101x典型应用电路及不同型号的关键参数参见图2。


图2:NCP101x单片开关稳压器典型应用电路及不同器件关键参数

NCP1027则为目标输出功率等级为数瓦到15 W的通用主电源反激应用提供新的方案。这器件采用安森美半导体专有的高压技术,集成了均直接连接至大电容的功率MOSFET及启动电流源。为了防止在低输入电压条件下出现热失控,这器件具有的可调节输入欠压保护电路阻止出现这种状况,直到达到充足的输入电平。这器件的其它特性包括可调节斜坡补偿、过功率保护、短路保护、过压保护等。此外,NCP1027提供较大的导通阻抗值,使其成为待机/辅助离线电源或要求较高输出功率应用的极佳选择。

NCP105x是使终端设备能够符合低待机能耗要求的单片开关稳压器,这系列器件直接采用整流的交流线路电源工作。在反激转换器应用中,它们在100、115或230 V固定交流输入电压下能够提供6.0至40 W的输出功率,而在85到265 V的可变交流输入电压下能够提供3.0至20 W的输出功率。这系列器件提供有源启动稳压器电路,使转换器变压器上无需辅助偏置绕组。其它特性包括故障检测器及可编程定时器(用于转换器过载保护)、独特的门控配置(提供极快环路路应及双重脉冲抑制)、电源开关限流、带迟滞的输入欠压锁定、热关闭及自动重启故障检测等。这系列器件25 ℃结温下的限流阈值典型值介于100 mA到680 mA之间。

提供不同电流电平的DC-DC开关稳压器

工程师同样可以根据具体应用选择安森美半导体的不同DC-DC开关稳压器方案,如3 A 开关稳压器NCP3155、1.5 A开关稳压器NCP3063/4、0.5/1.0/3 A开关稳压器LM2594/5/6、NCP3020/11脉宽调制(PWM)控制器及NCP1034 PWM控制器。

以NCP3155为例,这是安森美半导体新推出的一款DC-DC同步降压稳压器,包含NCP3155A和NCP3155B两个版本。NCP3155包含全集成电源开关(48 mΩ高端FET及18 mΩ低端FET),提供完整的故障保护特性(输入欠压锁定、输出过压保护及输出欠压保护、限流及短路保护)。这器件的输入电压范围为4.7至24 V,输出电压可调节。NCP3155支持较高的工作频率(A版本为500 kHz,B版本为1 MHz),能够使用较小的滤波器组件,从而减小占用的电路板空间及物料单(BOM)成本。NCP3155采用SOIC-8封装,典型应用电路图参见图3。


图3:NCP3155A典型应用电路图

NCP3063及NCP3064是1.5 A升压、降压及反转开关稳压器,包含内置温度补偿参考、比较器、占空比受控振荡器及有源限流电路、驱动器及大电流开关。这系列器件的设计专门针对升压、降压及电压反转应用,所需外部组件极少。这系列器件的输出开关电流达1.5 A,也可用作控制器,支持达5 A电流。NCP3064与NCP3063不同的是,提供导通/关闭引脚,用于低能耗关闭模式,典型待机电流消耗仅为100 μA。

LM2594、LM2595和LM2596分别是0.5 A、1.0 A及3 A降压开关稳压器。与常见的三端线性稳压器相比,这系列器件的能效要高得多,特别是在较高输入电压的条件下。这系列器件采用150 kHz开关频率工作,能够使用尺寸更小的滤波组件。其它特性包括:特定输入电压及输出负载条件下确保提供±4%的输出电压容限、振荡器频率精度达±15%、支持外部关闭(LM2594和LM2595待机电流典型值为50μA,LM2596为80 μA)、输出开关逐周期限流及故障条件下热关闭等。

NCP3020/11、NCP1034均为同步降压PWM控制器。其中,NCP3021/11支持4.7至28 V的输入电压范围,提供启用(EN)/功率良好(PG)/同步(SYNC)引脚,以及300/400/600 kHz的开关频率。保护特性包括无损耗限流、短路保护、输出过压保护、输出欠压保护及输入欠压锁定。

NCP1034与NCP3020/11不同,能够接受高达100 V的输入电压,并提供50 kHz至500 kHz的可调节开关频率,具备2 A输出电流能力,提供用户可编程输入欠压锁定及断续(hiccup)限流等保护特性。

提供不同电流电平的线性LDO稳压器

安森美半导体同样提供不同电流电平的线性低压降稳压器,方便用户的选择。这些LDO稳压器包括LP2951、NCP4640/1、NCP562及NCP4588等。

其中,LP2951是100 mA多功能LDO线性稳压器,特别设计用于输入与输出电压差极低的稳压应用。这器件提供75 μA的极低静态偏置电流,并提供固定或可调节输出电压(输出电压可在1.25 V至29 V之间设定)。NCP4640和NCP4641则是50/150 mA线性稳压器,支持4至36 V输入电压并可承受50 V电压。NCP562是80 mA超低静态电流LDO稳压器,静态电流低至2.5 μA。NCP4588则是200 mA输出LDO线性稳压器,典型静态电流小于9.5 μA,待机电流为0.1 μA,压降低至270 mV,并提供高70 dB的电源抑制比(PSSR)。这器件即使在负载电流变化的情况下也可以省去输出电容,在没有输出电容的情况下仍然保持稳定工作。但如果负载变化极大,可以使用0.1 μF至10 μF的输出电容。


图4:NCP4588在省去输出电容的情况下仍能保持稳定工作

安森美半导体应用于智能电表的其它解决方案

如上所述,安森美半导体为智能电表应用提供丰富的解决方案,除了上述电源及电源管理方案,还包括电力线载波(PLC)调制解调器,以及丰富的存储器(EEPROM及SRAM)、时钟、接口、保护/滤波产品等,构成我们应用于智能电表的完整解决方案。

例如,安森美半导体推出了支持2.4 kb的更高半双工可调节通信速率、符合IEC61334-5-1标的AMIS-49587高集成度低功率PLC调制解调器方案,以及能驱动高达2 A电流的高能效的A/B类低失真线路驱动器——NCS5650,能够很好地配合智能电表PLC调制解调器及线路驱动应用。


图5:应用于智能电表通信模块的PLC调制解调器及线路驱动器方案

总结:

电源及电源管理是智能电表的重要功能模块。安森美半导体为此功能模块提供丰富的产品选择,包括AC-DC开关稳压器、DC-DC开关稳压器及LDO线性稳压器,方便用户根据具体应用选择适合的器件。除了电源及电源管理方案,安森美半导体还为智能电表应用提供其它功能模块的丰富方案,如PLC调制解调器及线路驱动器、存储器(EEPROM及SRAM)、时钟、接口、保护/滤波产品等,构成应用于智能电表的完整解决方案。 一、配电线通讯

中低压交流配电线用于电能的输送同时,也可作为传输介质实现数据通讯。电力线载波通讯(PLC)技术就是通过载波方式将模拟或数字信号在配电线上进行高速传输的技术。用电力线作为数据传输介质,利用已有的电力配电网络进行通信不需要重新布线,信号不会因为通过建筑物墙壁而受到衰减甚至屏蔽,相对较为低廉的成本,使这项技术在电表自动抄表系统,灯光控制等许多领域受到青睐。

图1就是PLC技术典型的应用案例——远程电表自动抄表系统的示意图。

电表通过电力线与集中器进行数据交换。集中器通常位于变压器附近,是网络的核心管理者。它负责网络管理、数据集中采集、命令传送等工作;同时还通过上行线路(PSTN或RF等)与主站进行数据交换和信息传递。一台集中器可管理几十至几百只电表。

在这个系统中,集中器会按照设定的时间间隔读取各个电表的运行数据,并把数据传送给主站,实现自动远程集中抄表。

1.1 EDF项目

当今世界上许多国家都已采用或即将部署智能电表系统并采用自动远程集抄方式。目前备受关注的就是法国ERDF的Linky电表项目。

欧盟最大的电力配电网运营商,法国电力集团(EDF)的子公司——法国电网输送公司(ERDF)已经启动了一个涉及总数量3500万只电表的项目。该项目从2012年至2017年,将把法国国内的传统电表统一更换成新型的Linky智能电表。智能电表通讯采用电力线载波(PLC)技术。

项目对PLC的主要技术要求如下:

物理层:IEC 61334-5-1 和 EN 50065-1
调制方式:S-FSK
通信载波频率:Fm (传号频率):63.3KHz;Fs(空号频率):74KHz
通信速率:2400 Baud
物理层与电力线50Hz同步
应用层:IEC 62056-53和IEC 61334-5-511

1.2 安森美半导体与PLC通讯

安森美半导体针对低/中压电力线上数据通讯而研发了S-FSK PLC Modem,在工业现场已有超过8年的成功应用。Modem是采用S-FSK调制方式的窄带PLC收发器,是目前唯一经过多年市场验证的器件。

产品从早期的AMIS-30585发展到如今第二代产品AMIS-49587。

AMIS-49587完全满足ERDF的技术要求,已被Linky智能电表供应商选中作为PLC通信的核心器件。

下文中,结合EDF Linky电表项目的需求,介绍AMIS-49587的特点。

二、涵盖PHY和MAC Layer的收发器

2.1 Linky电表OSI层参考模型:

Linky项目采用3层网络结构:

— 物理层PHY 采用IEC 61334-5-1标准。
— 数据链路层DLL(包括MAC和 LLC子层)采用IEC 61334-5-1/ IEC 61334-4-32标准
— 应用层Application Layer 采用IEC 62056-53/IEC 61334-4-511标准

AMIS-49587最突出的特点在于其作为PLC收发器除了完成物理层S-FSK信号的收发、调制解调外,还向上包含了MAC子层的处理。这个特点使用户得以把更多的精力放在应用层的开发。通过AMIS-49587进行逻辑链路层(LLC Layer)数据包的交换,底层的帧头、帧校验等都会被自动添加。这在很大程度上减少了客户软件开发方面的工作量。

2.2 物理层采用优化的 S-FSK

电力配电线并不是为信号传送而专门设计的,它的阻抗处于随时变化中,也极易引入外界的各种电磁干扰。调制方式的选择力求在成本较低的情况下使其针对电力线特殊情况具有良好的通讯效果。

FSK(频移键控)是经典的实现成本较低的频率调制方式:利用两个独立的载频传送二进制0和1。S-FSK(Spread FSK)是让这两个频率尽可能远离,(>10KHz)使两个频率传输质量相对独立,以更好的应对电网中常见的窄带干扰的影响。
图3中我们可以看到:在噪声能量比较平均的宽带干扰下,两个载频的接收信号信噪比相似。接收器滤除掉其他频率,在f0 (空号频率)和f1(传号频率)产生两个解调信号—dS和dM,如果dS>dM,认为收到数据“0”;反之认为是数据“1”,这种情况接收器工作在FSK模式;如果遇到窄带干扰使其中一个载频下的信噪比很差时,接收器将忽略这个信道,用另一个较好信道的解调信号与一个内部阈值T作比较来决定收到“1”还是“0”。此时接收器工作在幅移键控ASK模式。

此外,Modem内部处理器的解调算法尤为重要。其对接收灵敏度影响很大。Linky项目要求接收机在S-FSK信号有效值2mV至2V内都可正常识别。

灵活的调制解调模式、先进可靠的解调算法使AMIS-49587具有优异的抵抗电力线上干扰的性能。

2.3 物理层帧格式

AMIS-49587按照IEC61334-5-1物理帧格式来传送数据。

物理帧以时间片(或称时隙,Time Slot)为发送间隔。帧起点被称为时间片指示器Slot indicator,这一点对应电力线电压50Hz的过零点。客户端(Client,也就是主机)必须在过零点开始发送物理帧。IEC61334-5-1的整个系统都是以时间片为同步依据的,了解这一点十分重要。

以2400bps速率为例,传送1个时间片或物理帧的时间需要150mS。

物理帧由前导码Preamble、起始子帧定界符Start Subframe Delimiter、MAC子帧(Data)和暂停域Pause组成。

物理帧总是起始于基本时间片的整数倍,这时刻称作时间片指示器。在时间片同步后,每个装置的物理层就可以通过它的内部时钟独立地跟踪时间片指示器。

前导码和起始子帧定界符(AAAAh和54C7h)具有重要意义。接收方可以在接收这4个字节期间:

1) 调整确定接收增益
2) 测量信噪比
3) 确定解调方式 FSK 或ASK
4) 帧检查,是否是合法的物理帧的开始
5) 调整服务器(Server,也就是从机)与客户端(Client)同步

2.4 MAC帧与物理帧

如图5所示:物理帧将MAC帧“包装”后发送。一个物理帧有38个字节数据域,一次可以发送一个MAC子帧。长MAC帧可以由多达7个MAC子帧组成。有多个MAC子帧的长MAC帧会被拆分成几个子帧,由相应数量的物理帧顺序发送。接收方全部接收后,再把它们整合起来。

MAC帧头Header由子帧数、初始可信值IC、当前可信值CC、差值可信值DC、源地址、目的地址以及填充长度Pad Length组成。可信值的使用会在后面中继的章节中详细介绍。LLC帧作为数据被包含在MAC帧中。

三、安森美半导体PLC解决方案

方案主要由PLC Modem ,AMIS-49587、驱动放大器NCS5650及耦合变压器组成。

PLC信号的发送路径(红色箭头):AMIS-49587调制出的S-FSK信号经过NCS5650进行放大后经变压器耦合到电力线上。变压器实现电压变换和阻抗匹配,也用于强弱电的隔离。NCS5650除了对信号进行功率放大外,其两级运放的结构还组成了衰减特性很陡的4阶低通滤波器。在对电力线接入设备有严格限制的欧洲,只有增加类似的滤波器,才能够保证系统对电力线的高频干扰注入满足EN 50065规范的要求。

蓝色箭头标注出了接收路径:变压器从电力线耦合过来的信号经过AMIS-49587内置放大器构成的低通滤波器在内部ARM进行FSK解调分析。

图6中黑色箭头是50Hz的过零检测信号引脚。系统依靠这个信号进行同步定时。

图中蓝色虚线框内是电表内的应用处理器,负责通讯应用层处理及计量。其与PLC Modem的接口是简单的SCI串行口。

方案的供电十分简单:一路12V——供给线路放大器,用于驱动PLC信号耦合变压器;一路3.3V给AMIS-49587供电。

3.1 AMIS-49587功能框图

我们再了解一下AMIS-49587的内部结构。

AMIS-49587的核心是一个32位ARM处理器,完成物理层和MAC层的处理,运行S-FSK调制解调的算法,同时也管理着与外部MCU的通讯。嵌入软件储存在片内ROM中。

芯片左边是模拟部分:FSK信号合成输出、接收解调以及系统时钟和50Hz的锁相环。

芯片包含了所有S-FSK信号处理、MCU接口管理等模拟、数字部分。变压器驱动由于是功率放大部分成为收发器板上的发热源。为了防止高热可能给系统精度带来影响,AMIS-49587并没有把信号的功率驱动纳入这颗IC中,而是采用外置方案。

3.2 独特的系统中继方案

在网络通讯中,长距离的信息传送需要中继来实现。安森美半导体的AMIS-49587支持采用Repetition with Credit算法进行中继。在这种中继方案中,系统没有需要预先设定的中继器Repeater。其核心理念是每一个服务器端(即电表)都可以是其它服务器的Repeater,帮助把信息或命令接续传递。即使收到的帧目的地址不匹配,如果需要转发,服务器也会将其转发。转发采用以时间片和声(Chorus)方式,这种方式依赖于整个系统统一与时间片同步。

Repetition with Credit中继算法采用了叫做可信值管理的办法。可信值分为7级,由客户端(集中器)进行管理。系统规定:如果服务器被配置成了Repeater,如果收到的MAC帧的当前可信值大于0,这个服务器就要在下一个时间片到来时把这一帧重复转发,当前可信值减一。直到当前可信值为0时帧重复的过程终止。在这种机制下,在同一时间片,可能存在许多服务器同时重复转发,这就是和声。

下面(见图8)以一个单MAC帧的转发过程为例,来说明Repetition with Credit机制。

1) 集中器在时间片K给电表5发出一帧并在MAC帧头设定了初始可信值为2。电表(Module PLC)1和2因为距离较近在时间片K正确收到这一帧。

2) 由于这一帧的可信值(Credit)大于0,集中器、电表1和2收到后在时间片K+1开始重复这一帧,当前可信值减一,变为1。电表3和4在这个时间片收到这一帧。但电表5由于线路太远还是没有收到。

3) 电表3和4在K+2重复同一帧。当前可信值减一,集中器、电表1和2也在同时重复,与3和4“和声”。电表5正确收到这一帧。由于当前可信值已变为0,下一时间片所有电表不再重复发送这一帧。

系统最大可设定初始可信值为7,假定一台集中器和一台电表的通讯距达300m。如果有了带有7级可信值管理的中继,通信距离将可达到2400m。

在这个中继机制中,有三个变量IC、CC、DC分别代表初始可信值、当前可信值以及差值可信值。集中器根据算法设置初始可信值。当前可信值CC会在帧转发过程中随每一次转发逐一递减。差值可信值DC对中间的转发器没有意义,只在目的地址电表处,IC减去CC,得到差值可信值DC。该电表会在回复帧中把DC值发送回给集中器,集中器可以根据这个值修订下次访问该电表的初始可信值。

由于电力线阻抗、干扰状况等处于时时变化中,PLC通讯的质量也在不断变化。可信值算法使客户端可以实时根据网络通信状况进行动态管理,以实现可靠的数据传送。

由AMIS-49587组成PLC网络废弃了传统的具有诸多弊端的路由方案,没有复杂的路由表,不需要人工设定和调整中继转发器,网络会自动的找到较佳路由线路,并且持续进行动态的调节。

此外,在Linky项目中,还引入了Repeater Call 机制。定期运行的这个机制通过先进的算法调整传输路径中转发器的设置,减少不必要的电表参与“和声”,以减少可能的串扰或回声,这是对网络路由的进一步优化。

3.3 网络建立

由AMIS-49587组成的网络采用主从结构,一个客户端(也称主机或集中器)与多个服务器(从机或电表)组成网络。一般通讯的发起者是客户端。按照IEC 61334-5-511,客户端运行“发现Discovery” 和“注册Register”服务。“发现”查找新加入或因故重新加入网络的服务器。如果服务器进行了正确的应答,进入注册过程,将被分配独立的MAC地址。

客户端会定期运行发现、注册服务,以实现系统Plug & Play。也会定期进行点对点的Ping服务以确定服务器是否在网和消除可能的地址冲突。

3.3.1 智能同步Smart synchronization

主从网络中,服务器必须先与客户端绑定(绑定后只回复该客户端)才能完成注册进而正常与客户端通讯。这个过程叫与客户端同步。服务器与一个客户端同步后,将不再应答其它客户端。客户端访问超时或服务器主动解除同步时,重新进入客户端搜索状态。

刚上电的服务器与50Hz锁定后会不断分析信道,查找前导码(AAAAh)和起始子帧定界符(54C7h),如果侦听到,而且接下来正确收到客户端发出的物理帧后,即可与该客户端同步,并接受注册。

在同步过程中,AMIS-49587采用了更加智能的Smart Synchronization:在一定时间内(可设定),新入网服务器可以先后与多个客户端同步再主动解除同步,期间记录每个客户端信号的强度(SNR)。在设定时间到来时,该服务器最后会选择与信号较强的客户端同步。

该机制非常有效的解决了抄表系统中常见的多台区/多相信号串扰问题。由于电表都会自动找到最近的集中器与之同步,不需要人工干预,使网络路径自动得到了优化,也极大的减少了施工中的工作量。

3.3.2 报警Alarm机制

AMIS-49587构成的PLC网络中还具有报警机制。当电表有故障发生时,要求其通过网络报警,以便管理人员及时得知并处理。主动上报相当于在网络中实现双向通讯。Linky电表会在物理帧的Pause时间段的3个字节发出Alarm警报。主机收到后会发起Discovery服务,以便调查具体故障原因。

Alarm另一个非常有用的功用是新电表刚接入时,会通过Alarm提示集中器发起Discovery。这会加快新表的接入过程。不必非得等待主机例行的Discovery服务到来。

四、结束语

安森美半导体的AMIS-49587是完全遵从IEC-61334标准开发的电力线载波收发器。在完成物理层调制解调外,嵌入MAC层的处理是这款芯片独到的特点,使其成为具有协议解析功能的PLC收发器。客户在使用这款收发器传送或接收的数据时,不需要太多关注协议的细节。

可信值“和声”中继模式取消了繁杂的路由表,在集中器控制下系统自动找到并持续调整较佳路由线路,使长距离通讯变得简单可靠的同时极大地减少了施工维护工作量。智能同步、Repeater Call 模式的加入更是进一步实时动态的对网络进行了优化。

安森美半导体还为PLC应用专门开发了线路驱动器——NCS5650。集成了高带宽运算放大器和高达2A输出电流的功率放大器。两级运放的结构使其非常容易配制成4阶低通滤波器,以便满足各种规章(如EN 50065)对电力线高频注入的严格限制。

安森美半导体的PLC解决方案非常适用于自动化抄表、灯光控制、家用电器以及其它区域集中控制等场合。方案简单易用,实施效果和可靠性已在欧洲工业现场有超过8年的验证。
半导体器件的开关特性

  MOS的基本元件是MOS管。MOS管是一种电压控制器件,它的3个电极分别称为栅极(G)、漏极(D)和源极(S),由栅极电压控制漏源电流。MOS管根据结构的不同可分为P型沟道MOS管和N型沟道MOS管两种,每种又可按其工作特性进一步分为增强型和耗尽型两类。

  1、静态特性

  MOS管作为开关应用时,同样是交替工作在截止与饱和两种工作状态。

  N沟道增强型MOS管的开关特性为:当栅源电压vGS<开启电压VTN时,管子工作在截止状态,类似于开关断开;当栅源电压vGS>开启电压VTN(大约在1~2V之间),且漏源电压加大到一定程度,满足vDS≥vGS-VTN时,管子工作在饱和状态,类似于开关接通。

  P沟道增强型MOS管与N型沟道增强型MOS管所不同的是,其工作电压vGS和vDS均为负电压,开启电压VTP一般大约在-2.5~-1.0V之间。

  2、动态特性

  MOS管在导通与截止两种状态发生转换时同样存在过渡过程,但其动态特性主要取决于与电路有关的充、放电所需的时间,而MOS管内部电荷“建立”和“消散”的时间很短。

标签: 半导体器件
半导体器件 半导体器件的开关特性_半导体器件

上一篇:温湿度记录仪在电子产品存放中的...

下一篇:冷热冲击试验箱技术参数

  • 手机多多
  • 官方微信订阅号
商品已成功加入购物车!