X
你好,欢迎来到仪多多。请登录 免费注册
仪器交易网
0我的购物车 >
购物车中还没有商品,赶紧选购吧!

称重传感器的原理及应用 传感器技术指标

时间:2020-07-30    来源:仪多多仪器网    作者:仪多多商城     
随着技术的进步,由称重传感器制作的电子衡器已广泛地应用到各行各业,实现了对物料的快速、准确的称量,特别是随着微处理机的出现,工业生产过程自动化程度化的不断提高,称重传感器已成为过程控制中的一种必需的装置,从以前不能称重的大型罐、料斗等重量计测以及吊车秤、汽车秤等计测控制,到混合分配多种原料的配料系统、生产工艺中的自动检测和粉粒体进料量控制等,都应用了称重传感器,目前,称重传感器几乎运用到了所有的称重领域。

1.高速定量分装系统

本系统由微机控制称重传感器的称重和比较,并输出控制信号,执行定值称量,控制外部给料系统的运转,实行自动称量和快速分装的任务。

系统采用MCS-51单片机和V/F电压频率变换器等电子器件,其硬件电路框图如图1所示,用8031作为中央处理器,BCD拔码盘作为定值设定输入器,物料装在料斗里,其重量使传感器弹性体发生变形,输出与重量成正比的电信号,传感器输出信号经放大器放大后,输入V/F转换器进行A/D转换,转换成的频率信号直接送入8031微处理器中,其数字量由微机进行处理。微机一方面把物重的瞬时数字量送入显示电路,显示出瞬时物重,另一方面则进行称重比较,开启和关闭加料口、放料于箱中等一系列的称重定值控制。


图1 原理框图

在整个定值分装控制系统中,称重传感器是影响电子秤测量精度的关键部件,选用GYL-3应变式称重测力传感器。四片电阻应变片构成全桥桥路,在所加桥压U不变的情况下,传感器输出信号与作用在传感器上的重力和供桥桥压成正比,而且,供桥桥压U的变化直接影响电子称的测量精度,所以要求桥压很稳定。毫伏级的传感器输出经放大后,变成了0-10V的电压信号输出,送入V/F变换器进行A/D转换,其输出端输出的频率信号加到单片机8031定时器1的计数、输入端T1上。在微机内部由定时器0作计数定时,定时器0的定时时间由要求的A/D转换分辩率设定。

定时器1的计数值反映了测量电压大小即物料的重量。在显示的同时,计算机还根据设定值与测量值进行定值判断。测量值与给定值进行比较,取差值提供PID运算,当重量不足,则继续送料和显示测量值。一旦重量相等或大于给定值,控制接口输出控制信号,控制外部给料设备停止送料,显示测量终值,然后发出回答令,表示该袋装料结束,可进行下袋的装料称重。

图2所示为自动称重和装料装置。每个装料的箱子或袋子沿传送带运动,直到装有料的电子称下面,传送带停止运动,电磁线圈2通电,电子称料斗翻转,使料全部倒入箱子或袋子中,当料倒完,传送带马达再次通电,将装满料的箱子或袋子移出,并保护传送带继续运行,直到下一次空袋或空箱切断光电传感器的光源,与此同时,电子称料箱复位,电磁线圈1通电,漏斗给电子秤自动加料,重量由微机控制,当电子秤中的料与给定值相等时,电磁线圈1断电,弹簧力使漏斗门关上。装料系统开始下一个装料的循环。当漏斗中的料和传送带上的箱子足够多时,这个过程可以持续不断地进行下去。必要时,工作人员可以随时停止传送带,通过拔码盘输入不同的给定值,然后再启动,即可改变箱或袋中的重量。


图2 自动称重和装料装置

本系统选用不同的传感器,改变称重范围,则可以用到水泥、食糖、面粉加工等行业的自动包装中。

2.传感器在商用电子秤中的应用

目前,商用电子计价秤的使用非常普及,逐渐会取代传统的杆称和机械案秤。电子计价秤在秤台结构上有一个显著的特点:一个相当大的秤台,只在中间装置一个专门设计的传感器来承担物料的全部重量,如图3所示。常用的电子计价秤传感器的结构如图4所示,其中图4(a)为双连椭圆孔弹性体,秤盘用悬臂梁端部上平面的两个螺孔紧固;图4(b)为梅花型四连孔弹性体,秤盘用悬臂梁端部侧面的三个螺孔坚固,中间支杆上粘贴补偿用的应变片。这两种形式的传感器,在计价秤中用得较多。图4(c)为三梁式弯曲弹性体,采样弯曲应力,对重量反应敏感,宜用来制作小称量计价秤。图4(d)为三梁式剪切弹性体,采样中间敏感梁的剪切应力,宜用来制作几百公斤称量范围计价秤。


图3 计价秤内部结构示意图


图4 计价秤用弹性体结构

用这些复梁型高精度传感器来支承一个大的称重平台,被称重物又可能放置在任何称台的任意位置上,必然会产生四角示值误差,对图4(a),(b)两种结构形式的传感器,可通过锉磨的形式进行角差修正。对图4(c),(d),它有上下两根局部削弱的柔性辅助梁,使传感器对侧向力、横向力和扭转力矩具有很强的抵抗能力,可以通过锉磨辅助梁的柔性部位来调整传感器的灵敏系数和四角误差。图5为一种商用电子计价秤的电路框图。传感器采用的是图4(b)所示的梅花型四连孔结构,该秤具有置零、自动清除单价、零位自动跟踪、自动去皮、次数累计和金额累计、打印输出等功能,7段绿色荧光数码管显示,使用十分方便。


图5 电子计价秤的电路框图

图6是采用CHBL3型号S型双连孔弹性体称重传感器制作的便携式家用电子手提秤的原理图,由称重传感器、放大电路、A/D转换和液晶显示四部分组成。图中,E为9V的叠层电池,R1-R4是称重传感器的4个电阻应变片,R5、R6与W1组成零点调整电路。当载荷为零时,调节RW1使液晶显示屏显示为零。A1,A2为双运放集成电路LM358中的两个单元电路,组成了一个对称的同相放大器,A/D转换器采用ICL7106双积分型A/D转换器,液晶显示采用3 1/2液晶显示片。该电子秤精度高,简单实用,携带方便。

称重传感器是一种高精度的传感器,必须按规定的规格使用。若不按规定的规格使用,不仅不能发挥称重的作用,而且容易损坏,尤其是绝对不准超过负荷安全值使用。


图6 手提秤的电路框图

对于因温度变化对桥接零点和输出,灵敏度的影响,即使采用同一批应变片,也会因应变片之间稍有温度特性之差而引起误差,所以对要求精度较高的传感器,必须进行温度补偿,解决的方法是在被粘贴的基片上采用适当温度系数的自动补偿片,并从外部对它加以适当的补偿。

非线性误差是传感器特性中较为重要的一点。产生非线性误差的原因很多,一般来说主要是由结构设计决定,通过线性补偿,也可得到改善。

滞后和蠕变是关于应变片及粘合剂的误差。由于粘合剂为高分子材料,其特性随温度变化较大,所以称重传感器必须在规定的温度范围内使用。

在露天下使用传感器,还应考虑阳光直射产生的温度影响和风压的影响。



    高低温试验箱产品具有模拟大气环境中温度变化规律。主要针对于电工,电子产品,以及其元器件及其它材料在高温,低温综合环境下运输,使用时的适应性试验。用于产品设计,改进,鉴定及检验等环节。

    此文归纳高低温试验箱温度传感器误差如下:

    1、温度传感器安装不当引入的误差

    如高低温试验箱中热电偶安装的位置及插入深度不能反映炉膛的真实温度等,换句话说,热电偶不应装在太靠近门和加热的地方,插入的深度至少应为保护管直径的8~10倍;热电偶的保护套管与壁间的间隔未填绝热物质致使炉内热溢出或冷空气侵入,因此热电偶保护管和炉壁孔之间的空隙应用耐火泥或石棉绳等绝热物质堵塞以免冷热空气对流而影响测温的准确性。

    热电偶冷端太靠近炉体使温度超过100℃热电偶的安装应尽可能避开强磁场和强电场,所以不应把热电偶和动力电缆线装在同一根导管内以免引入干扰造成误差热电偶不能安装在被测介质很少流动的区域内,当用热电偶测量管内气体温度时,必须使热电偶逆着流速方向安装,而且充分与气体接触。

    2、绝缘变差而引入的误差

    如热电偶绝缘了,保护管和拉线板污垢或盐渣过多致使热电偶极间与炉壁间绝缘不良,在高温下更为严重,这不仅会引起热电势的损耗而且还会引入干扰,由此引起的误差有时可达上百度。

    3、热惰性引入的误差

    由于热电偶的热惰性使仪表的指示值落后于被测温度的变化,在进行快速测量时这种影响尤为突出。所以应尽可能采用热电极较细、保护管直径较小的热电偶。测温环境许可时,甚至可将保护管取去。由于存在测量滞后,用热电偶检测出的温度波动的振幅较炉温波动的振幅小。测量滞后越大,热电偶波动的振幅就越小,与实际炉温的差别也就越大。

    当用时间常数大的热电偶测温或控温时,仪表显示的温度虽然波动很小,但实际炉温的波动可能很大。为了准确的测量温度,应当选择时间常数小的热电偶。时间常数与传热系数成反比,与热电偶热端的直径、材料的密度及比热成正比,如要减小时间常数,除增加传热系数以外,比较有效的办法是尽量减小热端的尺寸。使用中,通常采用导热性能好的材料,管壁薄、内径小的保护套管。在

    较精密的温度测量中,使用无保护套管的裸丝热电偶,但热电偶容易损坏,应及时校正及更换。

    4、热阻误差

    高温时,如保护管上有一层煤灰,尘埃附在上面,则热阻增加,阻碍热的传导,这时温度示值比被测温度的真值低。因此,应保持热电偶保护管外部的清洁,以减小误差。





人体具有压觉,人体皮肤深层结构内存在大量压力感受器。当机械刺激导致皮肤变形时,会引起感受器及神经末梢变形,压力感受器进入兴奋状态,引起神经末梢发出神经冲动,传入大脑皮层感觉区产生压觉。

 

机器的压觉来自各种压力传感器(Pressure Transducer)。压力传感器是能感受压力信号,并能按照一定的规律将压力信号转换成可用的电信号的器件或装置,通常由基于不同物理效应的压力敏感元件和信号处理单元组成。下面介绍几种常见的压力传感器。

 

1. 基于金属电阻应变效应的压力传感器,我们知道,金属导体的电阻值R与电阻率ρ和导体长度L成正比,与截面积S成反比。当金属导体受力而产生拉伸或压缩等机械变形时,L和S都会发生改变,从而引起电阻值发生变化,这种现象称为金属的电阻应变效应。从图中可以看出,当金属导体受到拉力F作用时产生了拉伸变形,长度由L变为L+ΔL,面积由S缩小到S’,从而导致该导体电阻值增大。

 

利用金属的电阻应变效应可以制作压力传感器的感压元件——金属电阻应变片,常用的有金属丝式和金属箔式两种类型。下面的图给出一种金属丝电阻应变片的基本结构,由电阻丝式敏感栅、基底、覆盖层和引线四部分构成。电阻应变式压力传感器的工作电流大,输出信号也大,灵敏度就高。但工作电流过大会使应变片过热,甚至烧毁应变片。金属箔敏感珊与基底的接触面积比金属丝大,因此散热条件好,工作电流可取得更大一些。

 

2. 基于压阻效应的压力传感器,1954年美国材料学家C.S 史密斯在对硅和锗的电阻率与应力变化特性测试时发现,当受到外力作用时电阻率会发生变化,这种现象称为压阻效应。利用半导体的压阻效应制作的压力传感器的感压元件称为半导体电阻应变片,其灵敏系数比金属电阻应变片大几十倍,且机械滞后小,但温度稳定性和线性度比金属电阻应变片差得多。

 

在我们的日常生活中,随处可以发现压阻材料的应用。例如,一种称为压敏导电橡胶的压阻材料,在不受力时如同绝缘体,但施压时其电阻随着压力的增加而变小。利于这个特点,可以制作各种压控开关。无压力时压敏导电橡胶是绝缘体,如同开关断开;当压力达到某阈值时,其电阻大大降低,压敏导电橡胶转变为导体,如同开关接通。

 

金属的电阻应变效应与半导体的压阻效应都表现为感压元件的电阻随外力的变化而改变,两者的区别是:前者的电阻变化是截面和长度等结构尺寸变化所致,而后者的电阻变化是电阻率变化所致。

 

3. 基于压电效应的压力传感器,1880年,两位年轻的法国科学家兄弟皮埃尔·居里(Pierre Curie)和他的哥哥雅克·居里(Jacques Curie)发现晶体具有一个特殊性质:当沿一定方向对满足一定对称性的晶体材料施加外力时,晶体材料会发生形状改变,同时其两个相对的表面上会出现正负相反的电荷,电荷量与受力大小成正比;当作用力的方向改变时,电荷的极性也随着改变;当外力撤掉后,它又会恢复不带电状态。这个性质称为晶体的压电效应。

 

晶体是否具有压电效应,是由晶体结构的对称性所决定的。以石英晶体为例,从下图以看出,当没有外力作用时,石英晶体的结构对称性使其内部正负电荷的作用相互抵消,对外呈不带电状态。当在外力的作用下发生形状改变时,其结构对称性发生改变,内部正负电荷的作用不再相互抵消,出现了电极化,对外呈现带电状态。

 

利用压电效应可以制作压电传感器。常用的压电材料有压电陶瓷、压电晶体、压电复合材料等,其应用遍及我们日常生活和高新技术领域的方方面面。例如,打火机、煤气灶、热水器、汽车等的点火要用到压电点火器,雷达、通信和导航设备中需要大量压电陶瓷滤波器,医学领域利用压电材料进行免疫检测、制作人工耳蜗等。

 

 

 

 

 

 

 

 

(来源:网络,版权归原作者)



上一篇:耐震压力表漏油的解决方案 压力...

下一篇:冷热冲击试验箱技术参数

  • 手机多多
  • 官方微信订阅号
商品已成功加入购物车!