涡轮的转速通过装在机壳外的传感线圈来检测。当涡轮叶片切割由壳体内永久磁钢产生的磁力线时,就会引起传感线圈中的磁通变化。传感线圈将检测到的磁通周期变化信号送入前置放大器,对信号进行放大、整形,产生与流速成正比的脉冲信号,送入单位换算与流量积算电路得到并显示累积流量值;同时亦将脉冲信号送入频率电流转换电路,将脉冲信号转换成模拟电流量,进而指示瞬时流量值。
图3-3 水力平衡原理示意图
图3-4 涡轮流量计前置放大器原理图
涡轮流量计是一种速度式流量计,利用气体推动流量计叶轮转动,叶轮旋转的速度与流体体积流量成正比,根据电磁感应原理,利用磁敏传感器从同步转动的叶轮上感应出与流体体积流量成正比的脉冲信号,经运算处理得出体积流量。其测量精度较高,准确度等级可达到1.0级、1.5级;量程比宽,一般为1:20测量范围宽;结构紧凑轻巧,装维护方便前后直管段要求较低,可用于中、高压计量。
涡轮流量计同样存在以下缺点:有可动部件,易于损坏,关键件轴承易磨损,抗脏污能力差,对介质的干净程度要求较高,难以长期保持校准特性,需要定期校验。造成误差的原因有:计量表自身质量问题,设计选型不合理,安装不到位,运行中维护保养不当等。
那如何控制误差呢?正确确定流量计使用的场所及规格。由于涡轮流量计涡轮惯性的存在,在流量波动频繁的场合不宜使用,否则会降低计量精度。要比较准确地估计用气量的峰谷值和介质的压力情况,正确确定流量计的规格。
气体涡轮流量计前必须安装过滤器;应保持过滤器畅通,若发现过滤器堵塞(可凭过滤器进出压差来判断)时,应及时对过滤器进行清洗,若未配差压计的每月清洗一次。要保证直管段的要求,尤其是表前有缩径或半开阀门的情况。安装时,密封垫不得突入管道中,流量计与管路轴线目测不得有明显偏差,不得产生安装应力。安装时一定要清扫干净管道内的所有杂质,以防轴承和涡轮卡死。
平衡流量计的基本原理是伯努利方程,关键技术是开孔的分布和的加工技术。采用A+FLOWTEK公司制造图用数控机床进行开孔保证流体流动状态达到动量、动能和热焓等性能的平衡,这些性能是标准孔板或仿造产品所无法达到的。尽管一些仿制产品的外形相似,但由于开孔不,不符合制造加工精度要求将会造成测量精度的下降、压损的提高和流出系数的降低。 平衡流量计的特点 1、压损:图2是标准孔板和平衡流量计压力恢复的比较。从图可见,平衡流量计的压损是标准孔板压损的二分之一到三分之一。低差压有利于降低噪声,因此,平衡流量计的噪声比标准孔板要小得多。 2、应用流体的极端条件:平衡流量计没有可动部件,选用合适的材料,可适用于极高温度(例如,航天工业应用的高温燃料的温度可达6000℉,约3300℃);应用于极低的温度(极端的低温可达-465℉,约-276℃);高压(约7000psia,约48MPa)和极端的流体流速(雷诺数大于107)。它也适用于有振动、两相流体、压损接近零的低速流体等流量的检测。 3、平衡:在流量计平板上的多孔,其位置和大小是由惟一的方程组确定,使质量流量、体积流量、动能或动量在节流装置的两侧是平衡的。而标准孔板由于流体形成涡流,使动量和动能的修正无法进行,因此,孔板节流装置两侧的动量和动能等不能平衡。一些平衡流量计的仿制产品不能满足精度等质量指标的主要原因是没有实现平衡关系式。 4、直管段:由于平衡流量计集多孔孔板和整流器的功能于一体,因此,其直管段要求大大降低。一些极端的应用场合,例如,截止阀时,上游侧直管段长度仅5D,下游侧直管段长度仅3D。一般应用时,上游侧直管段长度为1D~3D,下游侧直管段长度为1D。直管段的缩短,极大地有利于工艺配管,也有利于降低成本和节能。 5、精度:采用的计算,可对动量、动能和温度等影响进行修正,使平衡流量计的精度大大提高。一般应用场合,测量范围10:1时,其精度为±0.5%,测量范围3:1时,精度可达±0.3%。如果,串联非线性补偿环节,其精度可提高更多。 6、流出系数:正常工况下,标准孔板流出系数为0.61,而平衡流量计流出系数为0.89,接近文丘利管。根据流出系数的计算公式,流出系数大,有利于降低差压和压损。 3 平衡流量计的应用 平衡流量计具有高精度和压损小等特点,它具有下列应用。 1、作为标准孔板的升级换代产品,以提高测量精度,节能降耗。 2、 直管段缩短,降低安装空间。 标准孔板需要足够的直管段,以提高测量精度,而平衡流量计所需直管段短,不仅减少了直管段的支出,而且因大大缩小安装空间,降低了投资成本。 3、仪表压损降低,有利于降低供能设备的供能。 仪表本身是耗能设备,采用平衡流量计代替标准孔板,由于平衡流量计的压损是标准孔板的一半到三分之一。因此,对采用变频泵和风机的应用场合,用平衡流量计代替标准孔板时,可采用PFC控制变频电动机,降低能耗。基本原理
下一篇:冷热冲击试验箱技术参数