X
你好,欢迎来到仪多多。请登录 免费注册
仪器交易网
0我的购物车 >
购物车中还没有商品,赶紧选购吧!

自动生化分析仪原理与相关技术分析 分析仪是如何工作的

时间:2020-08-12    来源:仪多多仪器网    作者:仪多多商城     

生化分析仪(Chemistry Analyzer)是临床检验中经常使用的重要分析仪器之一它通过对血液或者其他体液的分析来测定各种生化指标:如转氨酶、血红蛋白、白蛋白、总蛋白、胆固醇、肌肝、葡萄糖、无机磷、淀粉酶、钙等。结合其他临床资料,进行综合分析,可以帮助诊断疾病,对器官功能做出评价,鉴别并发因子,以及决定今后治疗的基准等。

所谓全自动生化分析仪,就是把分析过程中的取样、加试剂、混匀、保温反应、检测、结果计算和显示以及清洗等步骤进行自动化的仪器,它可完全模仿并代替手工操作,因此,可以认为目前市场上需要手动更换比色杯(或比色盘) 的分析仪不是真正的“全自动”分析仪。全自动生化分析仪灵敏、准确、快速,不仅提高了工作效率,而且减少了主观误差,提高了检验质量。

全自动生化分析仪涉及光学、精密机械、自动控制、电子电路、热工学、生物化学、分析化学等学科,且要求高精度、高可靠性,是一个十分复杂的系统,国际上仅有少数几个知名跨国公司可以制造,如:贝克曼-库尔特(Beckman-Coulter) 、奥林巴斯(Olympus)、日立(Hitachi)等。在国内,深圳迈瑞生物医疗电子股份有限公司是比较早开始研制全自动生化分析仪的企业之一。

二、分析原理

全自动生化分析仪属于光学式分析仪器,它基于物质对光的选择性吸收,即分光光度法。单色器将光源发出的复色光分成单色光,特定波长的单色光通过盛有样品溶液的比色池,光电转换器将透射光转换为电信号后送入信号处理系统进行分析。

分光光度法是基于不同分子结构的物质对电磁辐射的选择性吸收而建立起来的方法,属于分子吸收光谱分析。当光通过溶液时,被测物质分子吸收某一波长的单色光,被吸收的光强度与光通过的距离成正比。虽然现在了解到Bouguer早在1729年已提出上述关系的数学表达式,但通常认为Lambert 于1760年比较早发现表达式,其数学形式为:

T=I/I 0 =e -kb

其中I 0为入射光强,I为透射光强,e为自然对数的底, k为常数, b为光程长度(通常以cm 表示) 。

比尔定律等同于Bouguer 定律,只是比尔定律以浓度来表达。将两个定律结合起来,组成Beer-Bouguer定律:

T=I/I 0 =e -kbc

其中c为吸光物质的浓度(通常以g/L 或mg/L 为单位)。将上式取以10为底的对数后,得到线性表达式:

A=-logT=-log(I/I 0 )=log(I 0 /I)=εbc

其中A 为吸光度,ε是摩尔吸收光系数或消光系数。

上述表达式通常称为比尔定律。它表明,当特定波长的单色光通过溶液时,样品的吸光度与溶液中吸收物浓度和光通过的距离成正比。

在波长、溶液和温度确定的情况下,摩尔消光系数是由给定物质的特性决定的。实际上,测得的摩尔消光系数也和使用的仪器有关。因此,在定量分析中,通常并不用已知物质的摩尔消光系数,而是用一个或多个已知浓度的待测物质作一条校准或工作曲线。

由于电子跃迁在基态和激发态之间能量差别较大,因此,室温下几乎所有分子的电子都处于基态。吸收光及返回基态的速度非常快,平衡迅速实现,这使得光吸收的定量准确性相当高。根据工作波段的不同,分光光度法可分为真空-紫外、可见光、紫外-可见和紫外-可见-近红外,其工作波段分别为0.1nm~200nm 、350nm~700nm 、185nm~900nm和185nm~2500nm 。作为临床生化分析使用,一般要求工作波长为340nm~800nm,属于紫外-可见分光光度法。吸光度与浓度之间简单的线性关系及紫外-可见光相对容易测量,使得紫外-可见分光光度法成为上千种定量分析方法的基础。

三、相关技术分析

全自动生化分析仪可以说是在传统的分光光度计的基础上发展来的。从结构上来说,它包含分光光度计的主要组成部分,如 : 光源、单色器(色散装置)、比色池、检测器等;另外,它还包括生化分析所需的特有部分,如:加样系统、清洗系统、温控系统、软件系统等。

1、光源

理想的光源应在整个波长范围内产生恒定的光强度,噪声低,长期稳定。遗憾的是实际上没有这样的光源,因此,需要依工作波段的不同选取不同的光源。

氘灯可在紫外区产生一定强度的连续光谱,在可见区也能提供有用的光强。尽管现在的氘灯噪声已很低,但灯的噪声仍是限制整个仪器噪声水平的主要因素。

卤钨灯在部分紫外区和整个可见光范围内可产生较强的连续光谱,噪声低,漂移小。大多数全自动生化分析仪采用卤钨灯作为光源。

1.油色谱分析仪进样器的清洗

  油色谱分析仪进样器比较容易污染,特别是内衬管容易污染,为此清洗进样器就显得比较重要,油色谱分析仪进样器内衬管可用溶剂棉球直接穿洗,穿洗后用大气流吹一下(主要吹掉棉球纤维并吹干溶剂),然后装好内衬管“O”型圈和密封压帽;污染严重时需用相应溶剂(甚至洗液)浸泡过夜后,再用超声波清洗,后用溶剂漂洗、烘干,存放在干燥器中备用。

  2.油色谱分析仪氢火焰离子化检测器的清洗

  可拆下FID外罩,取下电极和绝缘瓷垫,把外罩、电极和绝缘瓷垫用丙酮或酒精清洗然后烘干。如果污染严重,可以将待清洗零件放入超声波清洗液中,经超声后,用清水淋洗干净然后用酒精清洗并烘干。装配时注意极化线圈应居于喷口四周,不能与壳相碰。高度不能超过喷嘴口,如超过喷嘴口,点火后极化线圈会发红而影响检测器的稳定性和灵敏度,如果是色谱柱固定液污染检测器,则选择能溶解固定液的溶剂予以溶解。

  3.油色谱分析仪色谱柱的安装

  填充柱的安装

  填充柱在进样器和检测器两端的安装是类似的。若是柱头进样方式,填充柱的进样器一端应留出足够的一段空柱(至少50mm),以防插入的注射器针头触到填在柱端的玻璃纤维或柱填充物;在检测器一端,也应留出足够的一段空柱(至少4mm),以防喷嘴底端触到填在柱端的玻璃纤维或柱填充物。如下图所示:

 

柱头进样填充柱两端留空管部分示意图

  色谱分析仪Φ3mm(或Φ4mm)填充色谱柱与进样器、检测器的连接。

  安装步骤如下:

  (1)将M10×1 Φ3.2mm(或Φ4.2mm)柱螺母先套入色谱柱的两端。

  (2)在色谱柱的两端装上Φ3mm(或Φ4mm)石墨圈,向上推入进样器和检测器底部(要推到底),旋紧螺帽。

  (3)用中性皂液检漏,不应有漏气现象。

  (4)擦干皂液。

  注:填充柱的进样器端不能和检测器端搞混,应当在装填色谱柱时做标记,一般带有铝制标签端为接进样口端。

  毛细管柱的安装

  成品熔融石英毛细管柱很规整,柱端穿过密封石墨垫后应重新切口,切口应无毛刺,边缘齐整。用沾有丙酮的滤纸擦净待接入油色谱分析仪部分,以免引入杂峰而干扰分析。使用过一段时间的毛细管柱,若重新老化后仍有杂峰干扰,需将进样口端切除30cm左右后再使用。

  通常先装上柱螺母和密封石墨垫后再进行切割。用一适宜的玻璃切割工具(如壁纸刀片等),在欲切断的部位快速划过,轻轻敲去柱末端即可。

  注意:戴上防护眼镜,以防在处理、切割熔融石英毛细管柱时产生的飞扬颗粒物质对眼睛的可能伤害。处理毛细管柱时也应小心防止皮肤被扎伤。由于柱子具有一定的韧性,因此在处理毛细管柱时,事先注意这些十分重要。

准备熔融石英毛细管柱

  毛细管柱绕在金属框上,此框悬挂在柱箱内的毛细管柱支架上。柱两端由框底部伸出,平顺弯曲朝向进样器接口和检测器接口,不要让柱子的任何部位碰到柱箱内壁。石墨垫圈穿过柱时可能会污染柱,可按“准备熔融石英毛细管柱”中的说明切割柱端。下图为安装弹性石英毛细管柱时,进样口端和FID端需预留的长度。

  4.油色谱分析仪气体过滤器的维护

  载气流路控制系统中,如填充柱进样口的吹扫流路,毛细管进样口的分流及吹扫流路,均接有过滤器,其中装填有吸附剂。需要定期更换或活化。活化时需将过滤器按载气流向倒接入进样口,通入高纯氮气20ml/min,活化温度为260℃,时间10小时。




    频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。它又可称为频域示波器、跟踪示波器、分析示波器、谐波分析器、频率特性分析仪或傅里叶分析仪等

    频谱分析仪的工作原理

    频谱分析仪架构犹如时域用途的示波器,面板上布建许多功能控制按键,作为系统功能之调整与控制,实时频谱分析仪(Real-TimeSpectrumAnalyzer)与扫瞄调谐频谱分析仪(Sweep-TunedSpectrumAnalyzer)。实时频率分析仪的功能为在同一瞬间显示频域的信号振幅,其工作原理是针对不同的频率信号而有相对应的滤波器与检知器(Detector),再经由同步的多任务扫瞄器将信号传送到CRT屏幕上,其优点是能显示周期性杂散波(PeriodicRandomWaves)的瞬间反应,其缺点是价昂且性能受限于频宽范围、滤波频谱分析仪器的数目与最大的多任务交换时间(SwitchingTime)。

    常用的频谱分析仪是扫瞄调谐频谱分析仪,可调变的本地振荡器经与CRT同步的扫瞄产生器产生随时间作线性变化的振荡频率,经混波器与输入信号混波降频后的中频信号(IF)再放大、滤波与检波传送到CRT的垂直方向板,因此在CRT的纵轴显示信号振幅与频率的对应关系,信号流程架构如图1.3所示。

    影响信号反应的重要部份为滤波器频宽,滤波器之特性为高斯滤波器(Gaussian-ShapedFilter),影响的功能就是量测时常见到的解析频宽(RBW,ResolutionBandwidth)。RBW代表两个不同频率的信号能够被清楚的分辨出来的最低频宽差异,两个不同频率的信号频宽如低于频谱分析仪的RBW,此时该两信号将重叠,难以分辨,较低的RBW固然有助于不同频率信号的分辨与量测,低的RBW将滤除较高频率的信号成份,导致信号显示时产生失真,失真值与设定的RBW密切相关,较高的RBW固然有助于宽带带信号的侦测,将增加噪声底层值(NoiseFloor),降低量测灵敏度,对于侦测低强度的信号易产生阻碍,因此适当的RBW宽度是正确使用频谱分析仪重要的概念。

    另外的视频频宽(VBW,VideoBandwidth)代表单一信号显示在屏幕所需的最低频宽。如前所说明,量测信号时,视频频宽过与不及均非适宜,都将造成量测的困扰,如何调整必须加以了解。通常RBW的频宽大于等于VBW,调整RBW而信号振幅并无产生明显的变化,此时之RBW频宽即可加以采用。量测RF视频载波时,信号经设备内部的混波器降频后再加以放大、滤波(RBW决定)及检波显示等流程,若扫描太快,RBW滤波器将无法完全充电到信号的振幅峰值,因此必须维持足够的扫描时间,而RBW的宽度与扫描时间呈互动关系,RBW较大,扫描时间也较快,反之亦然,RBW适当宽度的选择因而显现其重要性。较宽的RBW较能充分地反应输入信号的波形与振幅,但较低的RBW将能区别不同频率的信号。例如使用于6MHz频宽视讯频道的量测,经验得知,RBW为300kHz与3MHz时,载波振幅峰值并不产生显着变化,量测6MHz的视频信号通常选用300kHz的RBW以降低噪声。天线信号量测时,频谱分析仪的展频(Span)使用100MHz,获得较宽广的信号频谱需求,RBW使用3MHz。这些的量测参数并非一成不变,将会依现场状况及过去量测的经验加以调整。








上一篇:气体检漏仪检测方法原理

下一篇:KO-7DJ土工膜(防渗膜)渗...

  • 手机多多
  • 官方微信订阅号
商品已成功加入购物车!