低压智能电动机保护器的可靠性设计
朱煜铭1 陆伟青2 朱文灏3
1. 山东省轻工业设计院
2. 上海安科瑞电气股份有限公司 上海201801
3. 上海电器科学研究所(集团)有限公司 上海200063
摘 要:针对低压智能电动机保护器在实际使用中遇到的各种电磁兼容问题,根据微处理器系统的特点从硬件和软件两个方面,提出了抗干扰方法,获得了良好的EMC性能。
关键词:微处理器;EMC电磁兼容性;软件;硬件;抗干扰
1 引言
电动机作为一种拖动机械因具有结构简单、价格低廉、使用维护方便等优点,在国民经济各个方面被广泛采用。在当代,随着电子技术的发展和智能电动机保护器技术的成熟而普及率越来越高。
智能电动机保护器采用了微处理器技术,不仅解决了传统的热继整定粗糙、不能实现断相保护,重复性差、测量参数误差大的缺点。保护器通过电流来判断断相故障,软件模拟热积累过程的方法来实现过载保护等方法保证了电机的可靠运行,而微处理器强大的扩展性包括开关量输入、继电器输出,4~20mA变送输出、RS485通讯等很好的满足了控制系统的“四遥”功能。
电动机保护器提高了电动机运行的可靠性和系统智能化要求,因此保护器的可靠运行起着举足轻重的作用,同时也对保护器抗外界干扰提出了比较现实的要求。下面就从硬件和软件两个方面提出可靠性设计。
2 硬件可靠性设计
2.1 微处理的选择
采用Freescale公司的高性能处理器MC9S08AW60。MC9S08AW60是Freescale公司一款基于S08内核的高度节能型处理器,是第一款认可用于汽车市场的微控制器。可应用在家电、汽车、工业控制等场合,具有业内较佳的EMC性能。
2.2 电源端滤波处理
利用电磁原理进行硬件电路滤波是提高保护器EMC的有效方法。线路如下图,经热敏电阻t、压敏电阻RV1、电感L1、L2、差模电容C1、共模电感L3、共模电容C2、C3组成的两级滤波处理,很好的隔离了由于电源端的输入和输出干扰。PTC热敏电阻器的主要用于过流过热保护,直接串在负载电路中,在线路出现异常状况时,能够自动限制过电流或阻断电流,当故障排除后又恢复原态,俗称“万次保险丝”。根据线路的最大工作电流来确定选择。压敏电阻主要用于吸收各种操作浪涌及感应雷浪涌过压保护,以防止这类过电压干扰或损坏各种电路元件。根据设计经受的浪涌电压按照最大允许使用电压和通流容量来选择。其中,L1、L2、C1为抑制差模干扰,L3、C2、C3为抑制共模干扰。L1、L2铁芯应选择不易饱和的材料及M-F特性优良的材料。按照IEC-380安全技术指标推荐,图中元件参数的选择范围为:C1=0.1~2uF;C2、C3=2.2~33uF;L3为几个或几十毫亨,随工作电流不同而取不同的参数值。
按照下面公式计算C2、C3的容量:
Ii=2πfCyU
式中:Ii───允许的交流漏电流
f───电源频率;
U───电源供电电压;
图1 电源端处理图
图2 电源端未滤波处理的实验效果
图3 电源端滤波处理后的实验效果
上图为电源端是否使用滤波器,使用瑞士TRANSIENT 2000电磁兼容测试仪1000V 100KHZ 0.75mS条件EFT群脉冲实验,从TEXtronix TDS1012B捕抓到的信号比较,未使用滤波处理的电源输出端产生了尖峰脉冲,会导致微处理器复位,甚至死机。
2.3 信号端处理
谐波和电磁辐射干扰会导致保护器误动作,使电气仪表计量不准确,甚至无法正常工作。在电动机控制回路中产生该类干扰源为变频器和现场对讲机。解决的方法有:一是信号输入线胶合,胶合的双胶线能降低共模干扰,由于改变了导线电磁感应的磁通方向,使其感应互相抵消。二是内部线路处理。如下图,采用双差分输入的差动放大器,具有很高的共模抑制比。在输入回路中接RC滤波器、信号的输入和输出端使用专用器件、降低输入输出阻抗、可靠接地和合理的屏蔽等措施。
图4 信号处理电路
2.4 保护输出端处理
输入输出端采用光电隔离的方法,也是可以消除共模干扰,同时在保护继电器的的输出端并接压敏电阻,有效的提高了继电器的寿命,也降低了由于外部接触器动作对内部的干扰。考虑到客户使用控制电压的不确定性和接触器线圈容量,确认使用MYG14D821。
图5 保护输出电路
2.5 外部存储技术和看门狗保护电路
使用外置存储芯片X25043,SPI接口。微处理器内置SPI控制模块,方便的与该芯片接口,外部存储技术保证了运行状态和事件的记录。低电压复位和外部看门狗提高了保护器的可靠性。
图6 外置存储器和看门狗电路
2.6 主体与显示单元通过RS485连接
考虑到使用环境的特殊性和要求的多样性,主体与显示单元之间连接也采用RS485 Modbus-Rtu协议连接,提高了显示与控制的可靠性。
3 软件可靠性设计
3.1 实时多任务的调度
保护器起着保护电动机的重任,对它的要求是既不能误动,也不能拒动,而且必须快速。实时多任务的调度实际是通过时间片的轮换实现宏观上的多任务效果。对于保护器而言,存在着三个重要的任务,等间隔的交流采样,根据算法得到稳态与暂态电量数据;根据得到的数据判断故障,故障计时、清零和脱扣输出;人机交互界面。下图以一个周波T=20mS,32点采样为例(考虑到快速除法),32次采样总时间为3.2mS,数据计算时间为9.72mS, 计时0.36mS,则人机交互的时间为6.72mS。这样的任务调度即满足了保护实时性要求,又较快的响应了参数设置。
图7 任务执行关系
3.2 交流采样、数字滤波
对于交流正弦信号,一个周期的电压有效值为
根据电工原理中连续周期交流信号的有效值的定义,将连续信号离散化,用数值积分代替连续积分,从而得到有效值与采样值之间的关系。离散化得到
同理
在对信号多次采样的基础上,通过软件算法提取最逼近真值的数据。这种算法计算连续的周期的交流信号,精度高,抗波形畸变能力强。在使用这种算法时,也可同时采用连续平均值法、中值算法等数字滤波,提高保护器的抗干扰能力。
3.3 软件陷阱
程序是固化在微处理器的存储器中,由编译器统一安排,但设计时,设计人员考虑到产品的扩展性,一般留有余量,也因此总有些存储空间会未被使用。当微处理器的PC指针因为干扰被错置时,系统就会出错。软件陷阱就是在不用的存储空间、中断入口、子程序后加入强制跳转指令,让出错的PC指针恢复正常。
方法是:NOP
NOP
JSR MAIN
4 结束语
本文针对低压智能电动机保护器在实际使用中遇到的各种电磁兼容问题,根据微处理器系统的特点从硬件和软件两个方面,提出了抗干扰方法,获得了良好的EMC性能。
文章来源于:《电机与控制应用》2009年第8期。
参考文献:
1、低压电动机保护器行业标准 JB/T 10736-2007
2、任致程,周中电力电测数字仪表原理与应用指南 北京:中国电力出版社,2007
3、Freescale,MC9S08AW系列单片机数据手册[EB/OL],2006。
4、陈伟华 电磁兼容实用手册 机械工业出版社 1998.8
5、周志敏 周纪海 开关电源实用技术设计与应用 人民邮电出版社
6、钱振宇 开关电源的电磁兼容性设计与测试 电子工业出版社
作者简介
1. 陆伟青 上海大学 研究方向智能化控制,手机:13585877341.电话:021-69158399 传真:69158302 邮箱:ACRELXLP@163.com
1、试送投运法
主要查找剩余电流动作保护器自身故障。具体操作方法是:先切断,再将剩余电流动作保护器的零序负荷侧引线全部拆除(二级、三级剩余电流动作保护器直接将出线拆除)再合保护器。若保护器仍然无法投运,则说明保护器自身故障,应予以修理或更换。若能正常运行,则保护器本身并无故障,再查找配电盘或者线路。其操作方法是:先将各路出线或交流负荷切断,若不能运行则说明配电盘上有故障,应检查各路、仪表等设备是否绝缘良好,接线是否正确;若能正常运行则说明配电盘上无故障。当确认故障发生在外线路上时,可采用分线查找法查找故障点。
2、直观巡查法
直观巡查法就是巡视人员针对故障现象进行分析判断,对保护区域包括剩余电流动作保护器和被保护的线路设备等进行直观巡视,从而找出故障点。巡视时应着重对线路的转角、分支、交叉跨越等复杂地段和故障易发点进行检查。这种方法简便易行,适用于对明显故障点的查找。如导线断线落地、拉线与导线接触及错误接线等。
3 、数值比较法
数值比较法就是借助对线路或设备进行测量,并把所测的数值与原数值进行比较,从而查出故障点。需要特别指出的是:当线路中性线绝缘下降或设备中性线重复接地,容易引起总保护频繁跳闸,而二级保护器不跳闸。在解决二级保护器跳闸时,不应采取将相线与中性线对调的方法投运二级保护,将设备重复接地线拆除即可。
4 、分线排除法
排查线路故障点时,可以按照“先主干、再分支、后末端”的顺序,断开低压电网的各条分支线路,仅对主干线进行试送电,若主干线无故障,那么主干线便能正常运行。然后,再依次将分支和末端投入运行。哪条线路投入运行时保护器跳闸,故障点就在哪条线路上,就可在此线路上集中查找故障点。
随着国家智能电网建设和社会主义新农村建设的进一步开展,广大用电户对供电质量、用电服务、用电安全及用电信息的透明度提出了更高的要求。海盐供电局率先采用的智能电子漏电管理保护器,为实现远程居民用户,漏电流、负额、过载监测奠定了基础。 1. 海盐县智能电子漏电管理保护器的应用现状 目前市场上的产品只是有一般漏电合闸功能,并采用传统的模拟电路进行控制,现有漏保器与我国目前进行的国家智能电网建设不相配套,我们目前研究的保护器项目综合参考了各方面的因素,它具有的功能既满足国家智能电网的建设所需,也同时符合一般用电户的实际所需。虽然目前国内外也有多家单位或研究所在研究新的漏电保护器,但他们的研发内容还存在着一定的缺陷。我们所研发使用的智能电子漏电管理保护器,特别具有功能如下:漏电流检测、实时电压数据读取、实时电流数据读取、实时开关状态读取、功率检测、RS485通讯、过载声光报警等功能。2010年7月,智能电子漏电管理保护器在海盐供电局正式挂网运行。海盐县供电局利用现有的电能表采集信息平台,率先在国网采用新一代智能电子漏电管理保护器。2010年7月,88台智能电子漏保器在海盐通元供电所辖区紫云南站台区试点运行,到目前为止,整个项目达到了设计的要求。 2. 工艺优势和经济效益分析 A.工艺优势 智能漏电管理保护器在传统漏电保护器的基础上,借助原有的电能表采集系统的RS485通讯网络资源,采用嵌入式SOC(System On Chip)技术及智能型电能计量技术,集漏电检测、漏电模拟试验、电流电压检测、功率检测、电能计量、跳合闸控制、RS485通讯、信息存储、声光报警、手动合闸、手动断闸等功能于一身,实施传统产品的更新换代。 B.降低成本 智能电子漏电管理保护器的运用,其超大的优良性能得到了充分的显现,例如当电能表的电路板损坏但分流器仍有电流通过、电压回路正常时,用电仍可正常进行,但电能表计量已失效,采用此型漏电保护器的电压、电流实时上传数据,对照电能表的相关计量上传数据进行比对,可发现电能表计量回路电流已中断,及时发出告警信息,更换故障电表恢复计量,减少电力公司的电费损失、降低与用电户发生纠纷的概率。在发达沿海省份,每当雷雨季节,每次雷雨过后,农村的电表故障率在千分之三左右,一个县的农村用表在7-9万块,那单次故障表总数在250块左右,每块表的单月用电100kWh计算,电力部门到每月抄表日发现故障再更换的话,每月有15000元电费需要人工协商补收。按每年雷季4个月每月只发生2次大规模雷击计算,单雷击造成的电表计费失效就达损失120000余元。如果整个地级市或全省都装上智能电子漏电管理保护器的话,每年将减少电力部门因故障表计量失效而引起的上千万元电费损失。 C.保护电力设施,减少用户超负荷用电烧毁电能表 电能表故障的主要因素有两个,一是本身质量、二是外来因素。近年来随着电力部门的规范管理,有质量问题的电能表已寥寥无几。外来因素成为了电表故障的主要原因,而这主要原因内的主要因素是电能表超负荷工作。虽然现在的智能电能表同样有数据上传反应,必竟电能表是个计量仪器非过载开关。采用智能型电子漏电管理保护器的过载警报功能,漏保器可以配合电能表的最大电流值设置超负报警电流值,只要超过预设的电流值用电,智能漏保器就能发出“滴”、“滴”的声光报警,直到用户去除部份用电设备后,智能漏保器自动取消告警声响,从而保护了电能表因用户超负荷引起的故障、减少此类问题引起的设备损失,提高电力部门的经济效益。同时对电力部门针对性作出更换大电流电能表提供依据,实现主动服务客户和保护设备的两全其美。 D.管理费用减少 根据农村家用漏电保护器管理运行规定,每月需要对农村家用漏电保护器进行逐户试跳,按每人每天可完成300计算,一个中等县的农村地区近9万用户每月就此项工作就要花费300个人工。已试点安装智能电子漏电保护器的供电部门简单算了一笔账,由此一年可节约3600个人工,相当于减少了12个人的一年常规工作量。同时还可以节约相应的车辆使用和油料消耗,年节约费用可超过200万以上,如果在地区网局、全省、国网推广那经济效益将十分可观。