X射线荧光光谱仪被广泛用于冶金、地质、矿物、石油、化工、生物、医疗、刑侦、考古等诸多部门和领域,也是野外现场分析和过程控制分析等方面仪器之一。
X射线荧光分析仪在日常使用中的注意事项:
1、X射线荧光分析仪从根本上来说是一种相对测量仪器,因此在使用过程中,需要定期对仪器进行标定和校准。
2、为保证有害元素含量的控制效果,X射线荧光分析仪的测量数据应与其他的测量手段结合起来使用;X射线荧光分析仪更适合生产过程的监控,甚至可以说:在生产过程中对有害元素含量的监控,X射线荧光分析方法是目前唯一可行的分析手段;而有害元素含量的最终裁定,则不应该仅仅依靠单一的测量手段。
3、被测量样品的处理与测量精度的关系:
从X射线荧光分析理论上说,对被测量样品进行必要的处理是必须的;一般来说,样品处理的越好,则测量精度就会越高,测量结果越可靠。在实际使用过程中,我们应该尽量对被测量样品进行必要的物理处理。
在测量不规则的样品时,虽然从X射线荧光分析方法上可以对测量进行技术上的校正,从而满足实际测量的需要;但这样做所付出的代价是牺牲测量精度和测量数据的可靠性。
X射线荧光光谱仪具有重现性好,测量速度快,灵敏度高的特点。能分析B(5)~U(92)之间所有元素。样品可以是固体、粉末、熔融片,液体等,分析对象适用于炼钢、有色金属、水泥、陶瓷、石油、玻璃等行业样品。无标半定量方法可以对各种形状样品定性分析,并能给出半定量结果,结果准确度对某些样品可以接近定量水平,分析时间短。薄膜分析软件FP-MULT1能作镀层分析,薄膜分析。测量样品的最大尺寸要求为直径51mm,高40mm。
X射线荧光光谱仪的基本原理:
X荧光光谱仪(XRF)由激发源(X射线管)和探测系统构成。X射线管产生入射X射线(一次X射线),激发被测样品。受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所收集到的信息转换成样品中各种元素的种类及含量。
用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。
X射线荧光光谱仪分为波长色散、能量色散、非色散X荧光、全反射X荧光。
波长色散X射线荧光光谱采用晶体或人工拟晶体根据Bragg定律将不同能量的谱线分开,然后进行测量。波长色散X射线荧光光谱一般采用X射线管作激发源,可分为顺序式(或称单道式或扫描式)、同时式(或称多道式)谱仪、和顺序式与同时式相结合的谱仪三种类型。顺序式通过扫描方法逐个测量元素,因此测量速度通常比同时式慢,适用于科研及多用途的工作。同时式则适用于相对固定组成,对测量速度要求高和批量试样分析, 顺序式与同时式相结合的谱仪结合了两者的优点。
X射线荧光分析技术(XRF)作为一种快速分析手段,为相关部门提供了一种可行的、低成本的并且及时的检测、筛选和控制有害元素含量的有效途径。相对于其他分析方法,XRF 具有无需对样品进行特别的化学处理,快速、方便、测量成本低等明显优势,特别适合用于各类相关部门作为过程控制和检测使用。
X射线荧光光谱仪的维护保养:
1、X射线荧光光谱仪中最昂贵的部分是高压 X射线光管,它是仪器的核心部件。X射线光管对冷却水的温度、压力、电导率都有严格的要求,其较好冷却水温为 22℃~24℃,一般不能超过 30℃,超过 35℃则使用寿命会大大降低。内部循环水用于冷却阳极靶附近的光管头部分,因此要求内部循环水为电导率很低的去离子水(必须保证该冷却水的电导率<2 μs/cm),以防高压击穿导致 x射线光管损坏。
2、分光晶体是具有把 X 射线荧光按波长顺序分开成光谱作用的晶体。影响分光晶体稳定性的因素有:温度、湿度、酸碱度等。
3、探测器性能一般用波高分布曲线的半宽高来衡量,若半宽高增大则说明分辨能力下降,检测器品质变坏。
4、真空系统是X射线荧光光谱仪的重要组成部分。对于真空泵,主要是应该定期检查真空泵油的油质和油量,检查油质时如果有白色或黑色,就说明油质不正常,应该立即更换泵油。
射线荧光光谱仪结构复杂,部件众多,涉及光谱、化学、机械、电控等各个方面,所以,对 X 射线荧光光谱仪的维护和保养需要具备各方面的知识,因此需要我们在工作中不断学习,充实知识,总结经验,使X射线荧光光谱仪在使用时能够发挥出最大的效能。
下一篇:恒温水浴的操作使用及注意事项