西门子作为较早进入我国的控制设备生产商,其产品在我国的各个行业中都有着广泛的应用。作为一种交流的速度控制设备在工业生产领域中发挥着巨大的作用。西门子的变频器分为通用、工程、专用三种不同的种类,其中通用型应用多且广泛。西门子的变频器具有种类多、通讯和配套软件全、性价比高的特点。变频器在我国的众多的机械设备中都有着广泛的应用。
1.西门子变频器常见故障分析
变频器常见的故障根据其故障类型的不同可以分为外部故障和变频器内部故障两种类型的故障,其中外部故障发生时应当注意检测变频器的外部参数、外部、电机等所引起的故障,变频器内部故障则分为软故障和硬件故障两个方面。变频器的外部故障主要有以下几中类型:
(1)参数设置错误,变频器内部所设置的参数需要与所驱动的电机相匹配,如变频器参数设置不当或是设置错误将会导致变频器无法正常启动。
(2)外部接线故障,在变频器的使用过程中其外部接线在长时间的使用后会出现断线、插头损坏等的问题从而影响变频器的正常运行。
(3)变频器外部供电出现问题,当变频器的外部电源出現“欠压、过压、过流、过频”等的问题时将导致西门子变频器无法正常运行。
(4)过载,造成西门子变频器过载主要是由于加速时间过短、制动量过大或是电网电压过低等的原因所导致的。针对这一问题可以采用延长电机启动加速时间、延长电机制动时间等的方式予以解决。由电机所导致的过载可着重检查电机是否存在卡死等的问题。
(5)过流,造成西门子变频器外部过流问题的原因可能是由于电机负载突变从而引起较大的冲击、电机或是供电线缆的绝缘遭到破坏短路等所导致的。
西门子变频器的软、硬件故障则主要针对的是西门子变频器自身,由于西门子变频器需要长时间承受高电压、高电流从而导致其内部的硬件(控制板类的控制部件、IGBT等功率部件)等的烧毁损坏,从而影响西门子变频器的正常运行。
2.西门子变频器常见故障的排查与解决
当西门子变频器出现故障时,首先查看西门子变频器上的数码管上所显示的报警信息,针对报警信息查看西门子变频器的报警说明以此来对西门子变频器的故障进行定位。如直接对一台故障的西门子变频器进行检查,在上电检查之初则首先需要使用来对西门子变频器进行测量。使用万用表对西门子变频器中的整流桥、IGBT模块等功率部件进行检查并注意查看西门子变频器中是否有明显的烧毁痕迹。在使用万用表对功率部件进行检查时,将万用表打到1K的电阻档,将黑表笔与西门子变频器的直流(-)极连接,而后使用万用表的红表笔分别连接西门子变频器的三项输入、输出端来测量电阻,测量所得出的电阻值应当在5-10K之间且输入、输出三相之间要相互一致,输出端的三相电阻值要略小于输入电阻值,完成了(-)测的电阻测量后继续将黑表笔放置在(+)测继续进行三相测量,测量方法与上述一致,如测量电阻值正常其并未有充放电现象则表明西门子变频器能够上电测量,如若不然则意味着西门子变频器功率部件损坏需要对测量存在问题的部件进行更换,尤其是西门子变频器中的功率部件上存在明显烧毁痕迹的不得将西门子变频器直接上电。
完成了对于西门子变频器的初步测量后需要对西门子变频器进行上电测量,以西门子变频器中MM4变频器为例:
(1)上电后西门子变频器上的数码管显示的是F231故障时,则意味着西门子变频器的电源驱动板或是主控板存在问题,则可以更换西门子变频器中的电源驱动板或是主控板来进行测试。
(2)在西门子变频器上电后如面板无显示或是面板下的指示灯不亮,则意味着西门子变频器的整流供电部分存在问题,应当对西门子变频器中的供电部分进行检测,可以使用万用表对西门子变频器中的整流部分中的整流二级管进行检测,发现存在问题的直接进行更换即可解决问题。
(3)如西门子变频器上电后显示的是(------),多数意味着西门子变频器中的主控板存在问题,可以通过更换西门子变频器主控板的方式予以解决,造成此类故障的原因主要是由于西门子变频器外部接入线中存在着较大的杂波,从而使得西门子变频器主控板上的电阻、等遭到冲击后损坏所造成的,此外,在西门子变频器工作的过程中也会产生较大的热量,如西门子变频器主控板散热不好也会造成主控板上的部件烧毁。
(4)在西门子变频器上电运行后,不论是空载运行还是带负载运行都会在西门子变频器上显示过流报警,当此类故障发生时一般意味着西门子变频器中的IGBT功率部件损坏,应当对西门子变频器中的功率部件及驱动部分进行详细的测量,检测存在问题的功率及驱动部件,更换新的部件后再详细的测量后才能再次上电,如驱动部分存在问题将会导致西门子变频器中新更换的IGBT在上电后再次烧毁。造成此类故障的原因主要是由于西门子变频器在使用的过程中出现多次过载或是西门子变频器长时间处于电压波动较大的情况,从而导致西门子变频器中的器件烧毁,针对这一情况需要对西门子变频器的外侧电路进行检测,检测电机是否正常,并在西门子变频器的进线端加装电压保护装置,以避免西门子变频器烧毁。
(5)某西门子变频器在使用的过程中经常出现无征兆的“停机”,重新启动后其有可能是正常的,将西门子变频器拆下后经过检测各器件均未能发现问题,通过对西门子变频器上电后经过长时间的观察后发现,在西门子变频器工作的过程中其主在工作时会存在着吸合不正常的问题,从而导致西门子变频器在工作一段时间后无法保持吸合状态从而导致掉电、乱跳等问题,经过对西门子变频器主接触器进行拆开后发现造成这一故障的主要原因是由于西门子变频器中的与主接触器线包一路的滤波电容漏电,从而导致电压偏低,导致无法正常吸合,如供电电压较高这一问题还可以掩盖过去而当电压较低时问题则会较为明显的暴露出来。通过对西门子变频器常见故障进行分析后发现,西门子变频器中的功率部件的损坏所占的比例并不高,而是其中的电阻、电容等的控制器件的损坏所占的比例较高,在故障排查时要予以注意。
1、根据负载特性选择,如负载为恒转矩负载需选siemensMM420/MM440变频器,如负载为风机、泵类负载应选择MM430变频器。
2、选择变频器时应以实际电流值作为变频器选择的依据,电机的额定功率只能作为参考。另外,应充分考虑变频器的输出含有丰富的高次谐波,会使的功率因数和效率变坏。因此用变频器给电动机供电与用工频电网供电相比较,电动机的电流会增加10%而温升会增加20%左右。所以在选择电动机和变频器时,应考虑到这种情况,适当留有余量,以防止温升过高,影响电动机的使用寿命。
3、变频器若要长电缆运行时,此时应该采取措施抑制长电缆对地耦合的影响,避免变频器出力不够。所以变频器应放大一、两档选择或在变频器的输出端安装输出电抗器。
4、对于一些特殊的应用场合,如高环境温度、高开关频率(尤其是在楼宇自控等对噪音限制较高的应用场所使用时需注意)、高海拔高度等,此时会引起变频器的降容,变频器需放大一档选择。
5、当变频器用于控制并联的几台电机时,一定要考虑变频器到电动机的电缆的长度总和在变频器的容许范围内。如果超过规定值,要放大一档或两档来选择变频器。另外在此种情况下,变频器的控制方式只能为V/F控制方式,并且变频器无法实现电动机的过流、过载保护,此时需在每台电动机侧加熔断器来实现保护。
6、使用变频器控制高速电机时,由于高速电动机的电抗小,会产生较多的高次谐波。而这些高次谐波会使变频器的输出电流值增加。因此,选择用于高速电动机的变频器时,应比普通电动机的变频器稍大一些。
7、变频器用于变极电动机时,应充分注意选择变频器的容量,使其最大额定电流在变频器的额定输出电流以下。另外,在运行中进行极数转换时,应先停止电动机工作,否则会造成电动机空转,恶劣时会造成变频器损坏。
8、驱动防爆电动机时,变频器没有防爆构造,应将变频器设置在危险场所之外。
9、使用变频器驱动齿轮减速电动机时,使用范围受到齿轮转动部分润滑方式的制约。润滑油润滑时,在低速范围内没有限制;在超过额定转速以上的高速范围内,有可能发生润滑油用光的危险。因此,不要超过最高转速容许值。
10、变频器驱动绕线转子时,大多是利用已有的电动机。绕线电动机与普通的鼠笼电动机相比,绕线电动机绕组的阻抗小。因此,容易发生由于纹波电流而引起的过电流跳闸现象,所以应选择比通常容量稍大的变频器。一般绕线电动机多用于飞轮力矩GD2较大的场合,在设定加减速时间时应多注意。
11、变频器驱动时,与工频相比,会降低输出容量10%~20%,变频器的连续输出电流要大于同步电动机额定电流与同步牵入电流的标幺值的乘积
12、对于压缩机、振动机等转矩波动大的负载和油压泵等有峰值负载情况下,如果按照电动机的额定电流或功率值选择变频器的话,有可能发生因峰值电流使过电流保护动作现象。因此,应了解工频运行情况,选择比其最大电流更大的额定输出电流的变频器。
13、变频器驱动潜水泵电动机时,因为潜水泵电动机的额定电流比通常电动机的额定电流大,所以选择变频器时,其额定电流要大于潜水泵电动机的额定电流。
14、当变频器控制罗茨风机或特种风机时,由于罗茨风机为容积形鼓风机,具有输出风压高的特点。从电机特性来看,其转矩特性近似为恒转矩特性,其起动电流很大,所以选择变频器时一定要注意变频器的容量是否足够大。
15、选择变频器时,一定要注意其防护等级是否与现场的情况相匹配。否则现场的灰尘、水会影响变频器的长久运行。
16、单相电动机不适用变频器驱动。
17、电机负载非常轻时,即使电机负载电流在变频器额定电流之内,亦不能使用比电机容量小很多的变频器。这是因为电机的电抗随电机的容量而不同,即使电机负载相同,电机容量越大其脉动电流值也越大,因而有可能超过变频器的电流容许值。
18、如果变频器的供电电源是自备电源,可以加上进线电抗器。