变频器在应用过程经常会出现的故障有:输入缺相、输出过流、直流母线过压欠压、速度故障(SSF),IGBT开路故障(IGBT-OCF)、整流桥烧毁、母线损坏等。可将这些故障分为三个类别,各个类别有针对性的采用差异性的故障诊断方法。
1.变频器一类故障诊断
一类为无损故障,即通过故障诊断并采取处理措施后不会对变频器造成损坏,如输入缺相、输出过流、直流母线过压欠压等,这类故障一般可通过硬件电路加以诊断。
以输入缺相故障为例,简单的诊断方法是通过硬件电路来诊断,将三相交流电压通过电阻分压后整流可得到一个较小的电压值,通过检测此电压值的大小来判断变频器是否发生输入缺相故障。当然还可以通过软件对输入缺相进行检测,只要检测Udc的交流成分周期就可判断是否缺相。
另外,通过硬件电路同样可实现变频器直流母线电压的过压欠压保护。母线电压过压一般在发电状态或在制动状态时容易发生,而欠压是在电网电压跌落,或者突然停电情况下发生,无论过压还是欠压都是将变频器能正常工作的母线电压给定值与实测的母线电压进行比较来实现诊断。
2.变频器二类故障诊断
第二类故障对变频器可能造成损害,但通过故障诊断加以处理后可使变频器继续运行,主要包括变频器速度传感器故障及逆变器开关器件开路故障两个方面。变频器SSF的发生可能会导致闭环系统的意外开环而发生系统飞车,损坏变频器及其他设备,甚至是造成人员伤亡。而变频器IGBT-OCF也是破坏性较大的故障,会导致突然停机,甚至长时间停机,造成不可估量的经济损失。因此,需要深入分析第二类故障诊断方法,这也将是本文的研究重点。
2.1速度传感器故障诊断
速度传感器故障可采用硬件法和软件法两种进行诊断。硬件法又分为直接硬件检测法和基于脉冲分析的故障诊断法。硬件法检测速度快,但会增加系统成本,更致命的是只能检测电压输出类型的速度传感器。
直接硬件检测法需要速度传感器内部电路的支撑,根据断线前后信号接入点的电位来诊断SSF,输出端子输出低电平可以诊断出SSF,若为高电平则表示速度传感器没有发生SSF故障。
除了直接用硬件电路检测速度传感器故障外还可以通过文献[1]所提出的脉冲信号检测速度传感器故障。
软件法诊断速度传感器的故障有基于神经网络的方法,也有基于小波变换的方法,还有基于状态观测器的方法。神经网络和小波变换复杂,计算量大,在实际应用中并不合适。因此,有必要继续研究变频器速度传感器故障诊断方法。
2.2变频器IGBT开路故障诊断
变频器中IGBT开路故障是一种出现频率较高的硬件故障,这种故障多发生于操作不当或意外过流,硬件没能及时保护变频器而导致,除此外IGBT开路故障还包括驱动开路故障。无论是发生那种类型的故障,只能停机维修或者更换变频器,严重影响设备的正常运行。
IGBT开路故障诊断也有硬件法和软件法之分,硬件法诊断速度快,能及时隔离故障。但硬件法需要测定逆变器特定点的电位,并结合PWM控制,来进行故障诊断。显然硬件法会增加系统成本,且由于逆变器死区时间的存在,使得用硬件诊断IGBT开路故障的方法可靠度降低,在死区调整后,又无法很好的配合故障诊断方法,因此这种方法的通用性较差。
软件诊断法且较易实现,目前有多种软件诊断IGBT开路故障的方法,其中三相电流平均值法较为简洁,其是基于计算电机电流平均值的诊断方法。利用三相电流平均值法诊断IGBT开路故障时,鉴于系统噪声的存在,必须设定一个合适的阈值才能较好的诊断IGBT开路故障。阈值的大小关系到故障诊断的灵敏度,其值如较大则不易判断出故障;如较小则该方法较灵敏,因此,需要合理取值。
3.变频器三类故障诊断
第三类故障为有损且不易控制的故障。此类故障不但对变频器造成重大硬件损坏,且在出现故障后不易修复,需要更换,如整流桥烧毁,母线电容损坏,控制电路和驱动电路内部短路,及开关器件短路等故障。此类故障的诊断时,首先应切断,作电阻特性参数测试,找出故障部位,加以更换。
2、挑选变频器的引进和引出电缆依据变频器的功率挑选导线截面适宜的三芯或四芯屏蔽动力电缆。尤其是从变频器到电机之间的动力电缆必定要选用屏蔽布局的电缆,且要尽能够短,这样可下降电磁辐射和容性漏电流。当电缆长度超越变频器所答应的输出电缆长度时,电缆的杂散将影响变频器的正常作业,为此要装备输出电抗器。关于操控电缆,尤其是I/0信号电缆也要用屏蔽布局的。关于变频器的外围元件与变频器之间的衔接电缆其长度不得超越10m。
3、在输入侧装沟通电抗器或EMC滤波器依据变频器装置场所的其它设备对电网质量的需求,若变频器作业时已影响到这些设备的正常运转,可在变频器输入侧装沟通电抗器或EMC滤波器,抑制由功率器材通断导致的电磁搅扰。若与变频器衔接的电网的变压器中性点不接地,则不能选用EMC滤波器。当变频器用500V以上电压驱动电机时,需在输出侧装备du/dt滤波器,以抑制逆变输出电压尖峰和电压的改变,有利于维护电机,一起也下降了容性漏电流和电机电缆的高频辐射,以及电机的高频损耗和轴承电流。运用du/dt滤波器时要留意滤波器上的电压降将导致电机转矩的略微下降;变频器与滤波器之间电缆长度不得超越3m。
1、逐步缩小法
所谓逐步缩小法,就是通过对故障现象进行分析、对测量参数做出判断,把故障产生的范围一步一步地缩小,最后落实到故障产生的具体电路或元器件上。它实质上是一个肯定、否定、再肯定、再否定,最后做到肯定(判定)的判断过程。例如一台变频器通电后,发现操作盘上无显示。首先判断肯定是无直流供电(可用万用表测量其直流电源电压),进一步检查,发现高压指示灯是亮的(测量PN电压进一步证实),否定主回路高压电路的故障,肯定了开关电源中给操作盘供电的一路电源有问题。测该路电源的交流电压正常,无直流输出,又无短路现象,就可以断定是该电源电路的整流管损坏。这个例子采用的是典型的逐步缩小法。它的整个过程就是通过分析和参数测量,判断、肯定、否定几个回合,最后确定是整流管损坏。
2、顺藤摸瓜法
所谓顺藤摸瓜法就是根据变频器工作原理,顺着故障现场,沿着信号通路,逐步深入,直达故障发生点,最终寻找到故障产生部位的一种方法。例如一台变频器输出电压三相不平衡。这种故障显然是由2种可能性造成的。一种可能是逆变桥内6个单元中至少有1个单元损坏(开路),另一种可能是6组驱动信号中至少有1组损坏。假设已确定有1个逆变单元无驱动信号,进一步确定驱动电路中故障的产生部位,可采用顺藤摸瓜法来寻找。具体到这个例子,可从上而下地查,即从驱动信号的源头,也就是CPU的输出端起往下查。
CPU输出有信号时检查光耦输入端有无信号,若无信号,则CPU到光耦输入端有断线现象。若有信号,则要检查光耦输出端,查看光耦输出端有无信号。若无信号,则表明光耦损坏。若有信号,则再检查放大电路的输入端和输出端,若输入端有信号而输出端无信号,则表明故障产生在放大电路,或放大管或相关元器件损坏。然后进一步落实就很容易了。
当然也可以从下向上来查,即从驱动信号输出端开始,也就是逆变器件的控制端往上查。逆变器件控制端无驱动信号,检查放大电路的输出端,有信号则表明放大电路与逆变器件控制端有断电现象。diangon、com若无信号则再检查放大电路的输入端,输入端有信号则表明放大管或相关元器件损坏,若仍无信号此时检查光耦输出端看看有无信号。若有信号,则放大电路输入端与光耦输出端有断线现象。若无信号则继续向上检查光耦输入端看看有无信号。若此时有信号,则表明可能是光耦损害或输出端电源不正常。若光耦输入端无信号而CPU输出端有信号,则CPU与光耦输入端之间有断线现象,或光耦输入端直流电源不正常。
3、直接切入法
所谓直接切入法,就是根据故障现象直接判断故障位置,更换故障元器件,快速排出故障。对于基本原理、各电路工作原理和作用、各元器件的作用等理论方面掌握的比较扎实又有丰富的修理经验、修理水平较高的人员,通常采用直接切入法。另外,对于一些比较典型的故障也可以采用直接切入法来处理。例如一台安川616PC5型变频器接通电源后,操作盘上无任何显示,但高压指示灯亮,且其它低压直流供电正常。根据工作原理我们判断,这种现象说明开关电源电路工作正常,只是提供给操作盘电源这一路。根据开关电源部分电路图,我们确定为电源侧有短路现象,怀疑可能是滤波电容器老化损坏导致电源侧短路,直接更换新电容,短路现象消除。接通变频器电源,发现这一路仍无直流电压,结合原理分析,疑为整流二极管损坏开路,更换整流二极管后,这一路直流电压正常,变频器恢复正常。
如果维修人员对变频器各部分的原理很熟悉,根据此台变频器无显示故障,直接就可以判断出来这是由于提供给操作盘的低压直流供电这路电源出了问题。然后再确定是由于滤波电容老化损坏短路,引起过电流,引起过电流,又将整流二极管损坏断路,导致操作盘无直流供电,出现无任何显示故障。
4、电位、电压分析法
在不同的状态下,变频器各部分电路中各点都具有不同的电位分布,因此,可以通过测量和分析电路中某些点的电位及其分布,确定电路故障的类型和部位。实际上当电路中存在故障时,电路中各点的电位必将发生变化,据此,可以判断出电路的故障点。另外阻抗的变化造成了电流的变化,电位的变化也造成了电压的变化,因此,也可采用电流分析法和电压分析法确定电路故障。
5、菜单法
即根据故障现象和特征,将可能引起这种故障的各种原因顺序罗列出来,然后一个个地查找和验证,直到确诊出真正的故障原因和故障部位。此法比较适合初学者使用,此处不再详加赘述。