在低负荷状态下,离心机都共有一个喘振问题。那么离心机喘振原因有哪些?如何解决呢?
1、冷凝器积垢
冷凝器换热管内表水质积垢(开式循环的冷却水系统最容易积垢),而导致传热热阻增大,换热效果降低,使冷凝温度升高或蒸发温度降低,另外,由于水质未经处理和维护不善,同样造成换热管内表面沉积沙土、杂质、藻类等物,造成冷凝压力升高而导致离心机喘振发生。
解决办法:清除传热面的污垢和清洗冷却塔。
2、制冷系统有空气
当离心机组运行时,由于蒸发器和低压管路都处于真空状态,所以连接处极容易渗入空气,另外空气属不凝性气体,绝热指数很高,为1.4,当空气凝积在冷凝器上部时,造成冷凝压力和冷凝温度升高,而导致离心机喘振发生。
解决办法:离心机采用K11制冷剂时,一般液体温度超过28℃时,表明系统中有空气存在。排除方法:启动抽气回收装置,将不凝性气体排出,一般将制冷剂R11的压力抽到稍低于制冷荆液体温度相对应的饱和压力,即28℃以下的对应压力:117.68KMP以下即可。
3、冷却塔冷却水循环量不足,进水温度过高
由于冷却塔冷却效果不佳而造成冷凝压力过高,而导致喘振发生。
解决办法:进行反喘振调节。当能量调节大幅度减少时,造成吸气量不足,即蒸气不能均匀流入叶轮,导致排气压力陡然下降,压缩机处于不稳定工作区,而发生喘振。为了防止喘振,可将一部分被压缩后的蒸气,由排气管旁通到蒸发器,不但可防喘振。而且对离心机启动时也有益:减少蒸气密度和启动时的压力,可减小启动功率。
4、蒸发器蒸发温度过低
由于系统制冷剂不足、制冷量负荷减小,球阀开启度过小,造成蒸发压力过低而喘振。
解决办法:检查蒸发压力过低原因,制冷剂不足添加制冷剂,制冷量负荷小,关闭能量调节叶片。
5、关机时未关小导叶角度和降低离心机排气口压力
当离心机停机时,由于增压突然消失,蜗壳及冷凝器中的高压制冷剂蒸气倒灌,容易喘振。
解决办法:停离心机时应注意主电机有无反转现象,并尽可能关小导叶角度,降低离心机排气口压力。
离心机操作过程中,应保持冷凝压力和蒸发压力的稳定,使离心机制冷量高于喘振点对应制冷量,以防喘振。
离心式压缩机发生喘振的原因:
进口压力或流量突然降低,低过最低允许工况点时,压缩机内的气体由于流量发生变化会出现严重的旋转脱离,形成突变失速(指气体在叶道进口的流动方向和叶片进口角出现很大偏差),这时叶轮不能有效提高气体的压力,导致出口压力降低。但是系统管网的压力没有瞬间相应地降下来,从而发生气体从系统管网向压缩机倒当系统管网压力降至低于机出口压力时,气体又向系统管网流动。如此反复,使机组与管网发生周期性的轴向低频大振幅的气流振荡现象。这对叶轮、叶片连续不平衡冲击会大影响寿命。现有厂家采用增加一个防喘振装置可以部分解决这个问题,但同时也造成零部件易损件增加及消耗能量等问题。
一般来说离心机组的能量调节范围为40%——100%,在低于40%负荷运行时,离心机组比较容易发生“喘振”现象,“喘振”严重时,可以使机组的整个核心部件——叶轮被损坏,使离心压缩机报废。目前很多离心机组厂家通过“补气”手段是机组“喘振”临界点达到“20%”或“10%”,而“补气”是需要消耗大量能量的,使机组在50%以下能效比相对较低。
以上就是关于离心机喘振原因的介绍,离心机喘振如何预防?保持冷凝压力和蒸发压力的稳定,使离心机制冷量高于喘振点对应制冷量即可。
此外,物质在介质中沉降时还伴随有扩散现象。扩散是无条件的绝对的。扩散与物质的质量成反比,颗粒越小扩散越严重。而沉降是相对的,有条件的,要受到外力才能运动。沉降与物体重量成正比,颗粒越大沉降越快。对小于几微米的微粒如病毒或蛋白质等,它们在溶液中成胶体或半胶体状态,仅仅利用重力是不可能观察到沉降过程的。因为颗粒越小沉降越慢,而扩散现象则越严重。所以需要利用离心机产生强大的离心力,才能迫使这些微粒克服扩散产生沉降运动。
离心就是利用离心机转子高速旋转产生的强大的离心力,加快液体中颗粒的沉降速度,把样品中不同沉降系数和浮力密度的物质分离开。
离心机的离心原理说明:
离心力(g)和转速(rpm)之间的换算
离心力G和转速RPM之间的换算其换算公式如下:
G=1.11×10^(-5)×R×(rpm)^2
其中,G为离心力,一般以g(重力加速度)的倍数来表示。
10^(-5)即10的负五次方,(rpm)^2转速的平方,R为半径,单位为厘米。
例如,离心半径为10厘米,转速为8000RPM,其离心力为:
G=1.11*10(-5)*10*(8000)2=7104
即离心力为7104g.
而当离心力为8000g时,其转速应为:8489即约为8500rpm.
离心机内部各系统可以每年仔细保养检修一次。仪器的可疑部分要进行校验和清除FI|部污物尘埃,长期不用时要定期通电,让油循环和冷冻系统启动运行,保证管遭畅通。下面就各个系统的检修加以说明。
1.驱动系统的检修
驱动系统是离心机的心脏部分,高速电机、变速齿轮、旋转轴承和滑动轴承等任何一部分出现不正常现象,都会影响仪器的正常运行。
驱动系统的主要异常情况有!出现异常声音;轴承烧坏,用于转动转子时有阳力感觉}犬齿轮打坏,高速旋转轴打断;升速缓慢,振动厉害,转速达不到额定转速;高速电机长期运行,轴承润滑油甩干,形成千磨而发生声音异常振动和转速不稳定等。
高速电机长期运行,碳刷磨损缩短,压簧松动,碳刷附着力减小,碳刷与换向器(整流子)之间的电阻增大和碳沫的污染,均能形成火花,烧毁换向器同时会发出一种放电的“啪啪”声,影响电机的正常运行。高速电机的线包短路、断路和绝缘破损均能使电机发热而不能启动。
出现以上任何一种异常情况,均应立即停机检修。
2.真空系统的检修
目前的超速离心机(高速离心机没有真空系统)大部分采用机械旋转式真空泵和油扩散泵两级真空系统,真空度可达到10-3mmHg,这样就大大地减少了空气的磨擦阻力和摩擦所产生的温度升高。为了保证离心腔内的真空度,预冷的转子装到旋转轴上之前要把表面的霜雾水分擦净,再入离心室,然后启动真空泵抽真空。
另外,在离心机长期的工作过程中,会有一些水分浸入瓢泵内与油混合。所以在每次检修时,要将真空泵底部的排油开关打开,把水排放出来,而后将附件漏斗插入排油口乙烯管中,加注MR一100真空油,一直加到油位观察中心标线高度若在排水之前发现油太脏、发黑,刚应全部将其放出更换。
做完上述检修后,接着检查聚油槽下面的乙烯管内是否积满油。如发现积油,说明油霉分离器被堵塞,这样就需要将油雾分离器顶母螺丝拧下,拆下顶盖,抽出滤芯更换离心腔内的真空度是否良好,除与真空泵的本身性能和故障有关外,还与仪器机门的密封橡胶圈、轴封套和管道的密封有关。发现漏气要立即修理,特剐是对一些不太注意的部位和接口处更要仔细检查。