柱填料的物理性能对填料色谱行为有重要影响。
填料主要的物理性能包括如下:颗粒度、孔径、孔体积、键合相化学、含碳量及烷基化处理。
(1)颗粒度是指柱填料的颗粒直径的大小。实际上色谱柱上所标的粒径是一个平均值。
如粒径“5μm”并不是柱中填料所有的颗粒直径都是5μm,实际上有一个颗粒分布度。这种分布度对柱反压及柱效有重要作用。
一般来说,平均颗粒度越小,颗粒分布度越小,色谱柱效越高,反压亦越高。目前C18柱填料粒径在4~10μm之间。
(2)孔径是指填料颗粒间的孔间隙。一般所说的孔径是指填料的平均孔径。
球形填料装柱后平均孔径分布比较窄,柱床结构均匀,柱效高,重现性好;无定形填料平均孔径分布较宽,柱床结构不均匀,流动相线性速度不均匀,谱带扩宽。
平均孔径的大小对分离大分子化合物有较大的影响,在分离含有较大分子的样品时可能会有分子排阻效应,或产生吸附效应从而影响定量的回收率及准确度。
因而在用反相色谱分离诸如蛋白或多肽样品时应考虑选用大孔径(如30 nm)的反相柱填料。
孔体积作为硅胶多孔性的参数,在分离分析较大分子化合物时可作参考,选用较大孔体积的反相柱填料。
(3)化学键合相填料在高效液相色谱法中占有极重要的地位。它可以键合极性较大的有机基团,采用极性较小的溶剂作流动相。
亦可键合极性较小的有机基团,选用极性较大的溶剂作流动相。C18色谱柱是以硅烷化键合型(Si-O-Si-C)存在的,这类键合反应目前应用较为普遍。
如以十八烷基三氯硅烷与全多孔型硅胶M-Porasil-C18反应生成烷基化学键合相,商品名为M-Bondapak-C18
(4)碳含量即填料中的含碳量。传统的测量技术是将填料加热到碳氢键断裂,然后通过测定损失的重量或形成的二氧化碳来计算碳含量。
可以通过增加碳键的长度或增加键合密度来增加碳含量。碳含量增加,柱子的保留值增加。
键合相的色谱行为与键合密度有关,也与硅胶的密度及填料的表面积有关,填料的密度越高,填柱所需的硅胶量越多,柱子的含碳量也越高。
如果用2种不同密度相同碳含量的填料填充柱子,其保留行为将明显不同。因此,单独以碳含量来预测色谱行为是不够的。
(5)C18硅烷化试剂是一个大于2 nm大分子,因此会与已键合在相邻的硅醇基上的C18硅烷化试剂产生严重的立体位阻。
其结果导致在硅胶表面有大量的残留硅醇基没有与硅烷化试剂反应,这些极性的硅醇基在一定色谱条件下会与碱性化合物相互作用引起峰形拖尾,从而可影响定量分析结果。
这些问题在一定程度上可以通过烷基化处理加以克服。烷基化处理是在键合相上完成的独立反应,以减少在硅胶表面的硅醇基。
烷基化处理采用小分子(如三甲硅烷)的试剂,其空间位阻远小于C18基团。大多数固定相仅有30%可覆盖的键合位置。
据报道,通过某些极活跃的化学试剂及特殊的反应条件,最高的覆盖量可达50%。
很好地了解硅胶键合相的物理特性将有助于在高效液相色谱的反应中选择合适的色谱柱。
表面上看C18柱虽然化学官能团相同,而实际上不同品牌的C18柱性能可能有很大差别,从而产生不同的分离结果。
如何选择兰化所气相色谱柱,我们可以从以下四个方面入手。
1、固定相的选择
当面对一个未知物时,先试用现有GC柱,如果该柱分离不理想,根据你对样品的了解,基本原则是分析物与固定相有相似化学性质时才会相互作用。这说明对样品越了解,越容易找到合适的固定相。
非极性分子——通常仅由C和H组成并且无偶极矩,直联(正烷)是常见的非极性化合物的例子。
极性分子——主要由C和H组成同时也有其他原子,如:N、O、P、S或卤素。样品包括有醇类、胺类、硫醇类、酮类、有机卤化物等。
可极化物质——主要由C和H组成同时包含不饱和键。通常有:炔和芳香族化合物。
如果你的样品是具有相似的化学性质的非极性组分的混合物,比如大多数石油馏分中的烃,你可以试用OV-1毛细管色谱柱,它按沸点顺序分离。如果你怀疑有芳族化合物,试着用有苯基的SE-52或SE-54柱。极性或可极化组分样品能够在中极性和/或可极化固定相色谱柱上进行分析,如有苯基或类似基团固定相,比如OV-17或OV-225柱。如果需要更高极性,可以选用聚乙二醇(PEG)固定相,即通常所说的WAX固定相。
2、长度选择
一般情况,15m柱用于快速筛选简单混合物或分子量极高的化合物。30m柱是较为普遍的柱长。超长柱(50、60或100m、150m)用于非常复杂的样品。
柱长度在柱性能上不是一个重要参数,例如:加倍柱长,恒温分析时间则加倍但峰分辨率仅增大约40%。如果分析只是比较好但不是特别好时,有比增加柱长度更好的办法来改进分析结果,如考虑更薄的膜,优化载气流量或用程序升温等。
分析活性极强的组分是一种特殊情况。如果样品与柱材质接触,那么峰会严重拖尾。较厚的膜、相对短的柱可以由于较少的柱材和较厚的固定液体掩盖其表面以屏蔽活性表面,从而减少相互作用的机会。
3、内径选择
增加直径意味着需要更多的固定相,即使厚度不增加,也有较大的样品容量。同时也意味着降低了分离能力且流失较大。小口径柱为复杂样品提供了所需的分离,但通常因为柱容量低需要分流进样。如果分离度的降低能够接受的话,大口径柱可以避免这一点。当样品容量是主要的考虑因素时,如:气体、强挥发性样品、吹扫和捕集或顶空进样,大内径甚至PLOT柱可能比较合适。
同时色谱柱内径的选择中要考虑仪器的限制和要求。填充柱的进样口可以使用大口径毛细管柱(0.53mm内径),而小口径柱就不一定能够被连接在仪器上使用。毛细管柱的进样口一般可以用于所有内径范围的毛细管柱。(0.1mm、0.25mm、0.32mm、0.53mm)直接联用的GC/MSD和MSD需要小口径柱,因为真空泵不能处理大口径柱的大流量。查明你的整个系统看看你适合那些柱内径的色谱柱。
4、膜厚选择
薄膜比厚膜洗脱组分快、峰分离好、温度低。
一般而言,兰化所气相色谱柱的膜厚为0.25到0.5μm。对于流出达300℃的大多数样品(包括蜡、甘油三脂、甾族化合物等)能够很好的分析。对于更高的洗脱温度,可以用0.1μm的液膜。而厚液膜对于低沸点化合物有利,对于流出温度在100℃~200℃之间的物质,用1~1.5μm的液膜效果较好。超厚膜(3~5μm)用于分析气体、溶剂和可吹扫出来的物质,以增加样品组分与固定相的相互作用。另一个选择厚膜的原因是当用大口径柱时保持分离度和保留时间。由于这个原因,大口径柱都只有厚膜。厚膜的流失较大,温度极限必须随膜厚度增加而下降。
综上所述,我们选择兰化所气相色谱柱时,可以从固定相、长度、内径以及膜厚4个方面来考虑。
标签: 选择兰化所气相色谱柱从四个方面_组合标题:色谱柱的安装:
1)将液相色谱装置中的流动相完全置换后再连接色谱柱,并完全排出流路内的空气。
装置内的液体和所使用的流动相不能相溶的情况下,使用双方都能相溶的液体做过渡。比如从水置换到氯仿的情况,就需要使用丙酮做过渡,才能完全置换。
将盐溶液置换成有机溶剂的时候,需要通过纯水、丙酮的顺序来进行置换。相反,从有机溶剂转换成盐溶液的情况下,需要通过丙酮、纯水的顺序置换。
不仅仅是泵,流动相流动的所有流路都必须进行置换。例如,注入样品的情况,软管内的液体也需要置换。另外,如果使用压力计等别的软管的情况,取下来的管子也必须由流动相洗净后才能继续使用。
2)色谱柱保存方法不对或者长期不使用的情况下,色谱柱的出入口可能会有空气残留。这种情况下,必须先把空气完全排出后才连接到装置中。
避免快速加热,加热温度不要超过色谱柱的最高负荷温度。
把柱子入口侧的螺栓打开,然后加温(一般加温到手心感到温暖的程度就足够了),等液体满出来以后接到装置上。然后,打开出口处的螺栓,用泵送液,等确认出口处有液体流出后,连接到装置中。这样操作,就算后面再连接一根色谱柱也能完全除去空气。
3)在泵运作的时候连接色谱柱。确保能让流动相按照色谱柱上箭头的方向流动的状态连接色谱柱。
4)色谱柱加温使用的时候,先用0.2~0.3mL/min的低流量一边送液一边升温。达到所定温度后,再渐渐的增加流量至测定流量。
5)色谱柱需要安定时间。连接到装置中立即进行测试的情况下,第一次很难得到好的分析结果。