X
你好,欢迎来到仪多多。请登录 免费注册
仪器交易网
0我的购物车 >
购物车中还没有商品,赶紧选购吧!

五个技巧让传感器变得更简单及工作原理

时间:2020-04-22    来源:仪多多仪器网    作者:仪多多商城     

五个技巧让传感器变得更简单

  传感器的数量在整个地球表面和人们生活周遭空间激增,提供世界各种数据讯息。这些价格亲民的传感器是物联网(IoT)发展和我们的社会正面临数字化革命,背后的驱动力。然而,连接和获取来自传感器的数据并不总是直线前进或那么容易,以下有5个技巧以协助缓解工程师与传输接口到传感器的第一次战争。
  技巧1―先从总线工具开始
  第一步,工程师应当采取首次介接到传感器时,是透过一个总线工具的方式以限制未知。一个总线工具连接一台个人计算机(PC),然后到传感器的I2C、 SPI或其他可让传感器可以“说话”的协议。与总线工具相关的PC应用程序,提供了一个已知与工作来源用以发送和接收数据,且不是未知、未经认证的嵌入式微控制器(MCU)驱动程序。在总线工具的工作环境下,开发人员可以传送和接收讯息以得到该部分如何运作的理解,在试图于嵌入式等级操作之前。
  技巧2―在Python编写传输接口码
  一旦开发者已尝试使用总线工具的传感器,下一步就是为传感器编写应用程序代码。并非直接跳到微控制器的代码,而是在Python编写应用程序代码。许多总线 工具在编写脚本(writing scripts)配置了插件(plug-in)和范例码,Python通常是随着.NET中可用的语言之一。在Python编写应用程序是快速且容易的, 其并提供一个方法已在应用程序中测试传感器,这个方式并未如同在嵌入式环境测试的复杂。拥有高层级的代码,将使非嵌入式工程师易于挖掘传感器的脚本及测 试,而不需要一个嵌入式软件工程师的照看。
  技巧3―以Micro Python测试传感器
  在Python写下第一段应用程序代码的其中一个优势是,透过调用Micro Python,应用程序调用到总线工具应用程序编程接口(API)可易于进行更换。Micro Python运作在实时嵌入式软件内,其中有许多传感器可供工程师来了解其价值,Micro Python运作在一个Cortex-M4处理器,且其是一个很好的环境,以从中为应用程序代码除错。不仅是简单的,这里也不需要去写I2C 或SPI驱动程序,因为它们已被涵盖在Micro Python的函式库中。
  技巧4―利用传感器供货商代码
  任何可以从传感器制造商“搜括”到的范例码,工程师需要走一段很长的路才能了解传感器如何工作的原理。不幸的是,许多传感器供货商并非嵌入式软件设计的专家,因此不要期待可以发现一个可投入生产的漂亮架构和优雅的例子。就使用供货商代码,学习这部分如何运作,之后重构的挫折感将出现,直到它可以被干净利索地整合到嵌入式软件。它可能如“意大利面条般(spaghetti)”开始,但利用制造商对其传感器如何运作的理解,在产品推出之前,将有助于减少许多得 被毁掉的周末时间。
  技巧5―使用一个传感器融合函式库
  机 会是,传感器的传输接口并不是太新,且先前没有人这么做过。已知的所有函式库,如由许多芯片制造商提供的“传感器融合函式库”,以协助开发人员快速掌握、 甚至更好,更可避免他们陷入重新开发或大幅修改产品架构的轮回。许多传感器可以被整合至一般类型或类别,而这些类型或类别将使驱动程序顺利被开发,若处理得当,几乎是普遍或是少可重复使用。寻找这些传感器融合函式库,并学习它们的优点和短处。
  最后的想法
  感测器被整合至嵌入式系统时,有许多方式可以帮助提高设计时程和易用性。开发者在开始设计时,透过一个高层次抽象概念,以及在把传感器整合进一个较低等级的 系统之前,学习传感器如何运作,就绝对不会“走错路”。今天存在的众多资源将可协助开发人员“旗开得胜”,而无须从头开始。

标签: 传感器
传感器 五个技巧让传感器变得更简单_传感器

温度传感器工作原理

  温度有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器。IC温度传感器又包括模拟输出和数字输出两种类型。

  1、热电偶的工作原理

  当有两种不同的导体和半导体A和B组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端)或冷端,则回路中就有电流产生,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向),称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决于电流相对于温度梯度的方向),称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0)是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。温差电势是指同一导体或半导体在温度不同的两端产生的电势,此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。无论接触电势或温差电势都是由于集中于接触处端点的数不同而产生的电势,热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b之间便有一电动势差△V,其极性和大小与回路中的热电势一致。并规定在冷端,当电流由A流向B时,称A为正极,B为负极。实验表明,当△V很小时,△V与△T成正比关系。定义△V对△T的微分热电势为热电势率,又称塞贝克系数。塞贝克系数的符号和大小取决于组成热电偶的两种导体的热电特性和结点的温度差。

  目前,国际委员会(IEC)推荐了8种类型的热电偶作为标准化热电偶,即为T型、E型、J型、K型、N型、B型、R型和S型。

  2、热电阻的工作原理

  导体的电阻值随温度变化而改变,通过测量其阻值推算出被测物体的温度,利用此原理构成的传感器就是电阻温度传感器,这种传感器主要用于-200—500℃温度范围内的温度测量。纯金属是热电阻的主要制造材料,热电阻的材料应具有以下特性:①电阻温度系数要大而且稳定,电阻值与温度之间应具有良好的线性关系。

  ②电阻率高,热容量小,反应速度快。

  ③材料的复现性和工艺性好,价格低。

  ④在测温范围内化学物理特性稳定。

  目前,在工业中应用广泛的铂和铜,并已制作成标准测温热电阻

  3、红外温度传感器

  在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断地向四周辐射电磁波,其中就包含了波段位于0、75~100μm的红外线,红外温度传感器就是利用这一原理制作而成的。

  SMTIR9901/02是荷兰SmartecCompany生产的一款现在市场上应用比较广的红外传感器,它是基于热电堆的硅基红外传感器。大量的热电偶堆集在底层的硅基上,底层上的高温接点和低温接点通过一层极薄的薄膜隔离它们的热量,高温接点上面的黑色吸收层将入射的放射线转化为热能,由热电效应可知,输出电压与放射线是成比例的,通常热电堆是使用BiSb和NiCr作为热电偶。此外,SMT9902sil内部嵌入以Ni1000温度传感器和一小视角的硅滤片,使得测量温度更加的准确。因为红外辐射特性与温度相关,可以使用不同的滤镜来测量不同的温度范围。成熟的半导体工艺是产品小型化,低成本化。为了满足某些应用,红外传感器开口视角可以设计成小至7°。

  4、模拟温度传感器

  常见的模拟温度传感器有LM3911、LM335、LM45、AD22103电压输出型、AD590电流输出型。

  AD590是美国模拟器件公司的电流输出型温度传感器,供电电压范围为3~30V,输出电流223μA(-50℃)~423μA(+150℃),灵敏度为1μA/℃。当在电路中串接采样电阻R时,R两端的电压可作为输出电压。注意R的阻值不能取得太大,以保证AD590两端电压不低于3V。AD590输出电流信号传输距离可达到1km以上。作为一种高阻电流源,最高可达20MΩ,所以它不必考虑选择开关或CMOS多路转换器所引入的附加电阻造成的误差。适用于多点温度测量和远距离温度测量的控制。

  5、逻辑输出型温度传感器

  设定一个温度范围,一旦温度超出所规定的范围,则发出报警信号,启动或关闭风扇、空调、加热器或其它控制设备,此时可选用逻辑输出式温度传感器。LM56、MAX6501-MAX6504、MAX6509/6510是其典型代表。

  LM56是NS公司生产的高精度低压温度开关,内置1、25V参考电压输出端。最大只能带50μA的负载。电压从2、7~10V,工作电流量大230μA,内置传感器的灵敏度为6、2mV/℃,传感器输出电压为6、2mV/℃×T+395mV。

  6、数字式温度传感器

  它采用硅工艺生产的数字式温度传感器,其采用PTAT结构,这种半导体结构具有精确的,与温度相关的良好输出特性。PTAT的输出通过占空比比较器调制成数字信号,占空比与温度的关系如下式:DC=0、32+0、0047*t,t为摄氏度。输出数字信号故与微处理器MCU兼容,通过处理器的高频采样可算出输出电压方波信号的占空比,即可得到温度。该款温度传感器因其特殊工艺,分辨率优于0、005K。测量温度范围-45到130℃,故广泛被用于高精度场合。

标签: 温度传感器
温度传感器 温度传感器工作原理_温度传感器

如何更好的选择称重传感器

  称重仪表也叫称重显示控制仪表,是将称重传感器信号(或再通过重量变送器)转换为重量数字显示,并可对重量数据进行储存、统计、打印的电子设备,常用于工农业生产中的自动化配料,称重,以提高生产效率。在工企业中应用的称重仪表性能指标通常用精确度(又称精度)、变差、敏锐度来形貌。仪表工校验仪表通常也是调校精确度,变差和敏锐度三项。

  1.变差是指称重仪表被测变量(可明白为输入信号)多次从差异偏向到达同一数值时,仪表指示值之间的最大差值,大概说是仪表在外界条件稳固的环境下,被测参数由小到大变革(正向特性)和被测参数由大到小变革(反向特性)不划一的程度,两者之差即为仪表变差。

  可靠性称重控制仪表可靠性是化工企业仪表工所寻求的另一紧张性能指标。可靠性和仪表维护量是相反相成的,仪表可靠性高阐。

  明仪表维护量小,反之仪表可靠性差,仪表维护量就大。对付化工企业检测与进程控制仪表,大部门安置在工艺管道、种种塔、釜、罐、器上。

  2.称重仪表在称重传感器中的稳固性在划定事情条件内,称重仪表某些性能随时间连结稳固的本领称为稳固性(度)。

  仪表稳固性是化工企业仪表工非常体贴的一天性能指标。由于化工企业利用仪表的环境相比拟力恶劣,被测量的介质温度、压力变革也相比拟力大,在这种环境中投入仪表利用,仪表的某些部件随时间连结稳固的本领会低沉,仪表的稳固性会降落。

  徇或表征仪表稳固性现在尚未有定量值,化工企业通常用仪表零漂移来衡量仪表的稳固性。称重仪表稳固性的优劣直接干系到仪表的利用范畴,偶然直接影响化工生产,稳固性不好造成的影响每每双仪表精度降落对化工生产的影响还要大。稳固性不好仪表维护量也大,是仪表工最不盼望出现的事情。

  3.称重仪表的敏锐度偶然也称"放大比",也是仪表静特性贴切线上各点的斜率。增长放大倍数可以提高仪表敏锐度,单纯加大敏锐度并不变化仪表的基天性能,即称重仪表精度并没有提高,相反偶然会出现振荡征象,造成输出不稳固。

  仪表敏锐度应连结恰当的量。对于大部分客户来讲,仪表精度虽然是一个紧张指标,但在实际利用中,每每更强调仪表的稳固性和可靠性,因为化工企业检测与进程控制仪表用于计量的为数不多,而大量的是用于检测。

标签: 称重传感器
称重传感器标签: 如何更好的选择称重传感器_称重传感器组合标题:

上一篇:温度变送器热惰性引入的误差及解...

下一篇:冷热冲击试验箱技术参数

  • 手机多多
  • 官方微信订阅号
商品已成功加入购物车!