红外热像仪可通过对建筑物表面的温度分布状况的检测,分析建筑物的结构,从而及时有效地发现例如外墙开裂、房顶裂缝、内部支撑损坏等问题,可避免严重影响救援进度、危害救援人员安全的房屋跨塌伤害事故,为救援工作提供技术保障;同时也可为受损房屋的安全及渗漏状况提供参考依据。红外热像仪是“建筑质量检测”的有力工具,即通过非接触的方式测量建筑结构的表面温度状态,来检测外墙的剥离、空鼓状况或评估保温节能效果,其同时具有的红外-可见光融合功能可以方便、快速地查出问题位置。
红外热像仪的应用实例:
1.检查保温层缺失或损坏状况。保温层的缺失或损坏会导致外墙表面形成明显温度差异,热像仪在可指示出保温层的位置、形状和强度,并进行记录归档。
2.外墙渗漏检测,当外墙部分区域发生渗漏,渗水部位与正常部位的热容量不一致,在环境温度发生变化的过程中,渗漏部位与正常部位的温度将会出现差异,这样虽然表面的颜色一致,但温度的差异可以在热像仪上及时、清晰地反映出来。
3.防水层渗漏检测,水分可渗过屋顶和墙壁中的接口和裂缝并积累起来,从而导致结构部件腐朽、发霉,有时还会造成严重的健康危害。因此,定期进行建筑防水层的热像检查是十分重要的。
外墙砖空鼓检测,空鼓部位的空气与正常部位的温度往往会有差异,其测量原理请参考外墙渗漏检测,一般检测外墙砖空鼓需要使用适合远距离、小目标的长焦镜头。
4.泄漏点检测,用于检测空气泄露点的常用方法是通过检测空气交换率并采用一种被称为“风门”的检测过程。在该过程中,房屋内会产生负压。此时,室外的压力大于室内的压力,因此,空气将会从密封不严的区域进入。红外热像仪能够快速检测到流动的气流,密封不严的区域就可以很方便地被加以识别,并且在完成下一步工序之前解决问题,从而避免由潜在的施工问题变成花费昂贵的棘手问题。
5.检查结构部件,有时面对已完成的构件结构,因为某些原因,我们可能要进行结构验证,如整体墙中带钢筋的灌浆室,浇注墙中的结构件或定位历史建筑物中表面以下的某些细节。热成像检查可帮助您快速找到灌注墙体、地板和天花板中的支撑梁、管道、电缆和烟道。只需对表面进行扫描,就可得到详细的热图像,清晰地显示出表面下的细节。
6.评估建筑材料及节能状况,对各种环境条件下保温材料的性能进行测试,以确定它们保持或反射热量的能力。热像仪可以显示出能量泄漏情况。如图示,外墙在有隔热材料覆盖时(左侧方型部位)温度明显比没有隔热材料覆盖的部位温度高,说明热量被保温材料所阻挡,难以通过外墙传递至室内。
7.屋顶及旧建筑翻修,城市中的房屋以及一些古老的建筑,特别是屋顶,其往往要经受日晒雨淋和大气的一些侵蚀,而其受损情况各有不同,如果我们只是简单地将整个屋顶或外墙加以更换,可能会耗费大量的时间与金钱,如果我们利有热像仪将辐射转为热图像或热图谱,它们可以形象地显示温度差别,从而轻松地区分出完好区域以及破损区域,这样可以节约大量的时间和金钱。
以上就是对于红外热像仪的简单介绍。对于很多难以实际检测的地方,红外热像仪的检测方法无疑变得非常的简便。高质量的热像图为工程师们提供了一幅简单而透彻的可视画面,让检测变得异常简单。
红外热像仪是一种用来探测目标物体的红外辐射,原理是通过光电转换、电信号处理等手段,将目标物体的温度分布图像转换成视频图像的高科技产品。
红外热像仪具有很高的应用价值和民用价值。
在市场方面,红外热像仪可应用于夜视侦查、瞄具、夜视导引、红外搜索和跟踪、卫星遥感等多个领域;
在工业行业方面,红外热像仪可以用于材料缺陷的检测与评价、建筑节能评价、设备状态热诊断、生产过程监控、自动测试、减灾防灾等诸多方面。
近年来,我国红外热像仪市场需求处于一个快速增长期。
我国红外热像仪市场的潜在需求要远大于实际需求:虽然当前我国民用红外热像仪市场的年需求约为6亿元,但从长期来看,zhong'guo红外热像仪市场的潜在需求可达500-600亿元。
未来5年,预计我国红外热像仪市场的年均增长率可达20%。
随着红外热图像处理技术、在线检测技术、小型化设计技术的日益成熟以及相关组件制造成本的降低,红外热像仪也被广泛应用在各个民用领域;
在工业控制、电力检测、汽车夜视、石化安全控制以及医学诊断等领域发挥着重要的作用,市场前景十分可观。
温度分辨率
红外热像仪的温度分辨率是指红外热像仪使观察者能从背景中**的分辨出目标辐射的小温度AT。通常使用NETD来表述该性能指标。
红外热像仪的温度分辨率体现了一台红外热像仪的温度敏感性,温度分辨率越小则意味着红外热像仪对温度的变化感知越明显。
因此在选择红外热像仪的时候尽量选择此参数值小的。
红外热像仪测试被测物的主要目的是通过温度差异找出温度故障点,测量单个点的温度值并没有太大意义,主要是通过温度差异来找相对的热点,起到预维护的作用。
空间分辨率
空间分辨率指的是在使用红外热像仪观测时,红外热像仪对目标空间形状的分辨能力。
一般来说,来说空间分辨率越小测温越准确,空间分辨率较小时,被测*小目标覆盖了红外热像仪的像素,测试的温度即被测目标的温度;
空间分辨率较高,被测的*小目标不能完全覆盖红外热像仪的像素,测试目标就会受到其环境辐射的影响,测试温度是被测目标及其周围温度的平均温度,数值不够准确。
红外热像仪的空间分辨率通常以mrad(毫弧度)为单位表示。
mrad的值越小,表明其分辨率越高。弧度值乘以半径约等于弦长,即目标的直径。
说起红外热像仪,人们的第一反应是在军事上的应用,尤其是在美国的战争大片中,红外线热像仪几乎成了必备的装备。
实际上,红外热像仪较早也是应用于军事领域,在技术逐渐成熟以后才应用于民用工业,并且迅速扩展。
红外线热像仪属于测温仪的一种,由于带了热成像的功能,不仅仅显示某个点的温度示数,而是整个面的温度分布,所以比一般的测温仪更加直观,可以说为技术人员提供了一双能够直接观测温度的眼睛。
目前,在电力系统、土木工程、汽车、化石、冶金等诸多领域都广泛存在红外热像仪的应用,其发展前景十分广阔。
红外热像仪原理的核心是波尔兹曼定律,这位在热学领域贡献颇多的科学家将普朗克的理论进行了延伸,他发现红外线总能量与绝对温度的四次方成正比。
这一关系建立后,通过光敏元件对不同波长红外线的反应值进行数字化处理,可以反演出温度值,就能够得到完整的热像图,图像中颜色的不同就代表了温度的不同。
红外热像仪经常用于工业设备的检测,比如锅炉、电机、变电站等等设备,如果有故障发生,其各部分的温度会出现异常,可以通过热像仪很明显地找到故障位置。
虽然热像仪可以通过遥感的方式很方便地对温度进行测量,但是毕竟属于间接测量方式,精度并没有一般温度仪那么高,当仪器量程比较大时,比如在冶金行业使用的红外热像仪,其量程达到几千度,其测温精度的差别会有±2℃。
但就使用的实际需要而言,这个误差完全在可以接受的范围内。如果将量程缩小,应用一般工业领域中,所测量的温度范围只有几百度左右,那么精度就会上升,测量的误差将减小。
红外热像仪属于便携式设备,单手操作即可,屏幕分辨率通常为240*320。然而不同的品牌在使用起来差别很大。
比如其使用的光敏元件不同,热灵敏度和分辨率也就不同。以Fluke的红外热像仪为例,其热灵敏度能达到0.045℃。再比如对焦是否快速准确,能否录制测量过程,人机界面是否友好等等。
上一篇:实验室离心机的分类及选购指南
下一篇:冷热冲击试验箱技术参数