1、激发系统:
(1)高能预燃低压火花激发光源+高纯氩气激发气氛:采用高能预燃,大幅降低了样品组织结构对原子化结果的影响
(2)高压火花激发光源+高纯氩气激发气氛:采集光强不稳定
(3)低压火花激发光源+高纯氩气激发气氛:对同一样品光强稳定,但是对于样品组织结构对原子化的影响无能为力
(4)直流电弧激发光源+高纯氩气激发气氛:对样品中的痕量元素光谱分辨率和检出限有好效果。
5)数控激发光源+高纯氩气激发气氛:按照样品中各元素的光谱特性,把激发过程分为灵活可调的几个时间段,每段时间只针对某几个情况相近的元素给出较佳的激发状态进行激发,并仅采集这几个元素。把各元素的激发状态按照试验情况进行分类讨论)
2、光学系统:
(1)帕邢-龙格光学系统(固定光路,凹面光栅及排列在罗兰轨道上的固定出射狭缝阵列):光学系统结构稳定,笨重,体积大。
(2)中阶梯光栅交叉色散光学系统(采用双单色器交叉色散技术,达到了高级次同级的高分辨率,同时又用二次色散解决了光谱的级次重叠问题):体积小,分辨率高,一般采集接固体成像系统。
3、测控系统:
(一)测量系统:
(1)光电倍增管+积分电路+模数转化电路:一般作为帕邢-龙格光学系统或C-T光学系统的光谱采集器,一个光电倍增管加上之后的电路只能采集一根谱线的强度。
(2)CCD/CID检测器+DSP:一般作为中阶梯光栅交叉色散光学系统的采集器,灵敏度略低于光电倍增管,但是可做全谱采集。
(二)控制:
(1)多层光电隔离的激发控制+光路控制+采集控制
(2)采用高抗干扰的通讯协议进行可又数据反馈的高效率控制。
4、计算机软件及数据处理系统:
(1)内标法
(2)通过标准物质绘制曲线。
(3)通过PDA技术筛选数据。
(4)通过软件通道的测量数据进行背景、以及第三元素干扰的去干扰运算。
(5)通过控制样品找回仪器的漂移量。
光电直读光谱仪又被称为火花源原子发射光谱仪,所采用的原理是用火花的高温使样品中各元素从固态直接气化并被激发而发射出各元素的特征波长,用光栅分光后,成为按波长排列的“光谱”,这些元素的特征光谱线通过出射狭缝,照射在对应的光电倍增管光阴极上,光信号变成电信号,经仪器的控制测量系统将电信号积分并进行模/数转换,然后由计算机处理,计算出各元素的百分含量。其核心部件主要包括光源、分光系统、检测器等。
如今,光电直读光谱分析已成为一项成熟的分析技术,具有样品处理简单、分析速度快、分析精度高、多元素同时分析等特点,几乎所有的钢铁企业、有色金属企业、铸造及机械加工企业,以及其他采用金属及其合金进行加工利用的行业都采用光电直读光谱仪进行生产过程及产品质量控制。
光电直读光谱仪在铸造行业的应用中,具有以下优点:
1)定量范围广、准确性及稳定性高等特点 光电直读光谱仪定量分析范围可从ppm—几十%,非常适于微量、痕量分析。当元素含量在0.1-1%或更低时,光电直读光谱分析法其准确度更优于化学分析。另外,光电直读光谱仪器分析,不存在人为误差,稳定性方面得到很大提高。
2)多功能、自动化和智能化特点 分析仪器正向智能化方向发展,发展趋势主要表现是:基于微电子技术和计算机技术的应用实现分析仪器的自动化,通过计算机控制器和数字模型进行数据采集、运算、统计、处理,提高分析仪器数据处理能力,数字图像处理系统实现了分析仪器数字图像处理功能的发展。 光电直读光谱仪已从传统的经典化学精密机械电子学结构、实验室内人工操作应用模式,转化为光、机、电、算(计算机)一体化、自动化的结构,并正向更名副其实的智能系统发展(带有自诊断、自控、自调、自行判断决策等高智能功能)。多用途可扩展的配置方式及多功能计算机软硬件技术包括的模块有:数据处理,曲线拟合,综合计算,数据分析,自动控制,自诊断与报警,通信,联网,定性分析、半定量分析等。大大地丰富了分析检测者的应用手段,并提高了生产效率,缩短企业交货期。
3)多通道多元素同时分析检测的快速化特点 光电直读光谱仪可同时进行多元素分析。直读光谱法进行炉前分析时,在数分钟内可同时得出铸件中二、三十个元素的分析结果,有利于铸造生产过程进行中间控制,加速生产、提高了生产效率。
4)直接以固态分析,不需要复杂的前处理 光电直读光谱仪分析样品的处理比化学分析法简单,从而大大地提高了分析速度。在对铸件进行分析检测中,简化了试样前处理过程,只需简单的将样品表面磨平。取消了手工分析方法过程中的试样粉碎、酸溶加热分解、化学反应、比色分析、人工读数等繁杂流程。
5)节约添加元素,降低生产成本 光电直读光谱仪能够快速准确的定量分析出样品的化学成分,对于铸造企业生产铸件时,如不锈钢的生产企业,能够很好的将cr、ni的化学成分控制在客户要求下限内,达到节约添加元素,降低生产成本。同时,由于具备快速的进行炉前定量分析,提高生产效率,为企业节约电费,降低生产成本。
光电直读光谱仪虽然本身测量准确度很高,但测定试样中元素含量时,所得结果与真实含量通常不一致,存在一定误差,并且受诸多因素的影响,有的材料本身含量就很低。
下面就误差的种类、来源及如何避免误差进行分析。
根据误差的性质及产生原因,误差可分为下面几种:
1.系统误差的来源
(1)标样和试样中的含量和化学组成不完全相同时,可能引起基体线和分析线的强度改变,从而引入误差。
(2)标样和试样的物理性能不完全相同时,激发的特征谱线会有差别从而产生系统误差。
(3)浇注状态的钢样与经过退火、淬火、回火、热轧、锻压状态的钢样金属组织结构不相同时,测出的数据会有所差别。
(4)未知元素谱线的重叠干扰。
如熔炼过程中加入脱氧剂、除硫磷剂时,混入未知合金元素而引入系统误差。
(5)要消除系统误差,必须严格按照标准样品制备规定要求。为了检查系统误差,就需要采用化学分析方法分析多次校对结果。
2.偶然误差的来源
与样品成分不均匀有关的误差。
因为光电光谱分析所消耗的样品很少,样品中元素分布的不均匀性、组织结构的不均匀性,导致不同部位的分析结果不同而产生偶然误差。
主要原因如下:
(1)熔炼过程中带入夹杂物,产生的偏析等造成样品元素分布不均。
(2)试样的缺陷、气孔、裂纹、砂眼等。
(3)磨样纹路交叉、试样研磨过热、试样磨面放置时间太长和压上指纹等因素。
(4)要减少偶然误差,就要精心取样,消除试样的不均匀性及试样的铸造缺陷,也可以重复多次分析来降低分析误差。
3.其他因素误差
(1)氩气不纯。当氩气中含有氧和水蒸气时,会使激发斑点变坏。如果氩气管道与电极架有污染物排不出去,分析结果会变差。
(2)室内温度的升高会增加光电倍增管的暗电流,降低信噪比。湿度大容易导致高压元件发生漏电、放电现象,使分析结果不稳定。
上一篇:真空干燥箱的优势何在及操作规程
下一篇:冷热冲击试验箱技术参数