差示扫描量热仪测量的是与材料内部热转变相关的温度、热流的关系,应用范围非常广,特别是材料的研发、性能检测与质量控制。
材料的特性,如玻璃化转变温度、冷结晶、相转变、熔融、结晶、产品稳定性、固化/交联、氧化诱导期等,都是差示扫描量热仪的研究领域。
热分析系列设备主要有:热传导检查设备TSI2、热物性测量设备TA33/TA35、热物性显微镜TM3B等等。
热传导检查设备TSI2可以通过热将空隙、裂纹等产品或材料的缺隙可视化。
主要特点
1.全新的炉体结构,更好的解析度和分辨率以及更好的基线稳定性。
2.数字式气体质量流量计,精确控制吹扫气体流量,数据直接记录在数据库中。
3.仪器可采用双向控制(主机控制、软件控制),界面友好,操作简便。
差示扫描量热仪应用范围:
高分子材料的固化反应温度和热效应、物质相变温度及其热效应测定、高聚物材料的结晶、熔融温度及其热效应测定、高聚物材料的玻璃化转变温度。
差示扫描量热仪作为常见的煤炭化验设备—量热仪系列产品中的一员,在整个的量热仪家族中占据这举足轻重的地位,一直以来,工作人员都在熟练的操作这些仪器进行工作,但是,同样也存在不少个的人对这种量热仪究竟是怎样工作的还不是很明白,本文特汇总部分资料说明下差示扫描量热仪的工作原理。
一、示差扫描量热法我们必须的明白这种量热仪运用的原理其实就是示差扫描量热法:
示差扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。DSC和DTA仪器装置相似,所不同的是在试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差腡时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大;反之,当试样放热时则使参比物一边的电流增大,直到两边热量平衡,温差腡消失为止。换句话说,试样在热反应时发生的热量变化,由于及时输入电功率而得到补偿,所以实际记录的是试样和参比物下面两只电热补偿的热功率之差随时间t的变化关系。如果升温速率恒定,记录的也就是热功率之差随温度T的变化关系。
二、差示扫描量热仪就是运用了以上的系统原理,现在我们找一款类似的设备看下这种类型的量热仪都有哪些配置及特点?
(一)主要配置制冷系统除霜功能动态调制DSC功能
(二)主要特点功率补偿型设计原理,直接测定能量和温度而非温度差,灵敏度为微型炉设计,仪器升降温速度快,热慢性小,平衡时间短量热精度±温度精度±温度范围-170℃~+550℃动态量耗
(三)主要用途:
高分子材料的定性,定量分析、熔点、玻璃化温度、结晶度、熔融热和结晶热、纯度、反应动力学、比热、相转变温度、相容性面向学科:
广泛应用于塑料,橡胶,涂料,胶粘剂,医药,石油化工等不同领域熟悉这种差示扫描量热仪的各种原理及配置后,以后我们在操作这种量热仪的时候就能够做到真正的熟练顺手,同时我们也将更多的一下类似于智能一体定硫仪、定硫仪、自动量热仪、微机全自动量热仪等各种煤炭化验设备。
差示扫描量热法(DSC)是在程序控制温度条件下,测量输入给样品与参比物的功率差与温度关系的一种热分析方法。差热分析(DTA)是在程序控制温度条件下,测量样品与参比物之间的温度差与温度关系的一种热分析方法。
两种方法的物理含义不一样,DTA仅可以测试相变温度等温度特征点,DSC不仅可以测相变温度点,而且可以测相变时的热量变化。DTA曲线上的放热峰和吸热峰无确定物理含义,而DSC曲线上的放热峰和吸热峰分别代表放出热量和吸收热量。因此我们以DSC为例来剖析量热分析。
差示扫描量热法(DifferentialScanningCalorimetry,简称DSC)为使样品处于一定的温度程序(升/降/恒温)控制下,观察样品端和参比端的热流功率差随温度或时间的变化过程,以此获取样品在温度程序过程中的吸热、放热、比热变化等相关热效应信息,计算热效应的吸放热量(热焓)与特征温度(起始点,峰值,终止点...)。
DSC方法广泛应用于塑料、橡胶、纤维、涂料、粘合剂、医药、食品、生物有机体、无机材料、金属材料与复合材料等各类领域,可以研究材料的熔融与结晶过程、玻璃化转变、相转变、液晶转变、固化、氧化稳定性、反应温度与反应热焓,测定物质的比热、纯度,研究混合物各组分的相容性,计算结晶度、反应动力学参数等。
差示扫描量热仪原理:
如上图所示,样品坩埚内装有样品,与参比坩埚(通常为空坩埚)一起置于传感器盘上,两者之间保持热对称,在一个均匀的炉体内按照一定的温度程序(线性升温、降温、恒温及其组合)进行测试,并使用一对热电偶(参比热电偶,样品热电偶)连续测量两者之间的温差信号。由于炉体向样品/参比的加热过程满足傅立叶热传导方程,两端的加热热流差与温差信号成比例关系,因此通过热流校正,可将原始的温差信号转换为热流差信号,并对时间/温度连续作图,得到DSC图谱。
样品热效应引起参比与样品之间的热流不平衡,由于热阻的存在,参比与样品之间的温度差()与热流差成一定的比例关系。将对时间积分,可得到热焓:(温度,热阻,材料性质…)
由于两个坩埚的热对称关系,在样品未发生热效应的情况下,参比端与样品端的信号差接近于零,在图谱上得到的是一条近似的水平线,称为“基线”。当然任何实际的仪器都不可能达到完美的热对称,再加上样品端与参比端的热容差异,实测基线通常不完全水平,而存在一定的起伏,这一起伏通常称为“基线漂移”。
而当样品发生热效应时,在样品端与参比端之间则产生了一定的温差/热流信号差。将该信号差对时间/温度连续作图,可以获得类似如下的图谱:
差热分析曲线怎样分析?
按照DIN标准与热力学规定,图中所示向上(正值)为样品的吸热峰(较为典型的吸热效应有熔融、分解、解吸附等),向下(负值)为放热峰(较为典型的放热效应有结晶、氧化、固化等),比热变化则体现为基线高度的变化,即曲线上的台阶状拐折(较为典型的比热变化效应有玻璃化转变、铁磁性转变等)。
图谱可在温度与时间两种坐标下进行转换。
对于吸/放热峰,较常用的可以分析其起始点、峰值、终止点与峰面积。这其中:
起始点:峰之前的基线作切线与峰左侧的拐点处作切线的相交点,往往用来表征一个热效应(物理变化或化学反应)开始发生的温度(时间)。
峰值:吸/放热效应最大的温度(时间)点。
终止点:峰之后的基线作切线与峰右侧的拐点处作切线的相交点,与起始点相呼应,往往用来表征一个热效应(物理变化或化学反应)结束的温度(时间)。
面积:对吸/放热峰取积分所得的面积,单位J/g,用来表征单位重量的样品在一个物理/化学过程中所吸收/放出的热量。
另外,在软件中还可对吸/放热峰的高度、宽度、面积积分曲线等特征参数进行标示。对于比热变化过程,则可分析其起始点、中点、结束点以及拐点、比热变化值等参数。
以上就是关于差示扫描量热分析仪原理与差热分析曲线分析知识的介绍,如果对差示扫描量热分析仪的原理、结构、曲线分析还不明白的地方,可以继续查询和关注我们。