早期使用隔膜和停流进样器,装在色谱柱进口处。现在大都使用六通进样阀或自动进样器。
进样装置要求:密封性好,死体积小,重复性好,保证中心进样,进样时对色谱系统的压力、流量影响小。HPLC进样方式可分为:隔膜进样、停流进样、阀进样、自动进样。
1.隔膜进样。
用微量注射器将样品注进专门设计的与色谱柱相连的进样头内,可把样品直接送到柱头填充床的中心,死体积几乎即是零,可以获得较佳的柱效,且价格便宜,操纵方便。但不能在高压下使用(如10MPa以上);此外隔膜轻易吸附样品产生记忆效应,使进样重复性只能达到1~2%;加之能耐各种溶剂的橡皮不易找到,常规分析使用受到限制。
2.停流进样。
可避免在高压下进样。但在HPLC中由于隔膜的污染,停泵或重新启动时往往会出现“鬼峰”;另一缺点是保存时间不准。在以峰的始末信号控制馏分收集的制备色谱中,效果较好。
3.阀进样。
一般HPLC分析常用六通进样阀(以美国Rheodyne公司的7725和7725i型常见),其关键部件由圆形密封垫(转子)和固定底座(定子)组成。由于阀接头和连接管死体积的存在,柱效率低于隔膜进样(约下降5~10%左右),但耐高压(35~40MPa),进样量正确,重复性好(0.5%),操纵方便。
4.自动进样。
用于大量样品的常规分析。
一、样品预处理的重要性:
1、样品预处理所用时间远大于色谱分离时间。
2、消耗大量的溶剂和其它化学品,占分析消耗总成本最大。
3、样品预处理是实验的重复性和准确性最差的环节,是影响实验结果好坏的重要因素。
二、样品预处理的目的:
1、除去微粒,减少干扰杂质。
2、浓缩微量组分。
3、提高检测的选择性和灵敏度。
4、改善分离效果。
5、有利于色谱柱和仪器的保护。
6、使样品形式和所用溶剂符合HPLC的要求。
三、样品预处理达到的要求:
1、样品全部转化为低浓度溶液。
2、样品溶液洗脱强度低于流动相,与流动相相溶。
四、样品预处理的原则:
1、在样品预处理过程中,尽可能防止和避免与待测组分发生化学反应。
2、在样品预处理过程中,如果与待测组分进行化学反应,那么这一反应必须是已知的,而且可以定量的完成。
3、在样品预处理过程中,要防止和避免待待测组分被玷污,尽可能减少无关化合物引入制备过程。
4、样品的处理过程应尽可能简单易行,所采用的样品处理装置尺寸应与样品处理量相适应。
5、采样之后应尽可能快的进行样品的分析测定,或使用合适的方法消除可能的变化和干扰。
五、样品预处理方法:
1、过滤、离心:
常用的滤膜材质有纤维素、聚四氟乙烯和聚酰胺。其中聚酰胺应用广泛。
2、加速溶剂萃取:
加速溶剂萃取是在提高温度(50~200℃)和压力(10.3~20.6MPa)下,用溶剂萃取固体或半固体样品。
3、超临界流体萃取:
超临界流体萃取是利用超临界流体对物质的特殊溶解性能原理而建立的萃取方法。
4、固相萃取:
固相萃取是通过采用选择性吸附和选择性洗脱对样品进行富集、分离和净化,可以将其近似地看作一种简单的液固色谱过程。
5、固相微萃取:
固相微萃取是基于涂敷在纤维上的高分子涂层或吸附剂和样品之间的吸附-解吸平衡原理,集采样、萃取、浓缩和进样于一体的无溶剂的样品微萃取方法。
有直接固相微萃取、顶空固相微萃取、膜固相微萃取和毛细管固相微萃取等。
6、液相微萃取:
液相微萃取是基于样品和微升级甚至纳升级有机溶剂之间的分配平衡原理,集采样、萃取和浓缩于一体的环境友好的样品微萃取方法。
有直接液相微萃取、中空纤维液相微萃取和顶空液相微萃取等。
7、衍生化:
有紫外衍生化、荧光衍生化和电化学衍生化等。
1、高效液相色谱仪的基本工作原理
高效液相色谱仪如图1所示,是由溶液贮器、高压泵、进样系统、色谱分离柱、检测器和数据处理系统几部分组成。
高压泵从溶液贮器中抽走流动相,流经整个仪器系统,形成密闭的液体流路。样品通过进样系统注入色谱分离柱,在柱内进行分离。柱流出液进入检测器,使已被分离的组分逐一被检测器收集,并将响应值转变为电信号后经放大被数据处理系统记录色谱峰,通过数据处理系统对记录的峰值进行存储和计算[1]。
液相色谱仪是依靠色谱柱进行分离的。研究证明:物质的色谱过程是指物质分子在相对运动的两相(液相和固相)中分配“平衡”的过程。液相色谱是以具有吸附性质的硅胶颗粒为固定相,各种洗脱液为流动相。当液体样品在载体流动相的推动下,在液-固两相间作相对运动时,由于各组分在两相中的分配系数(K)不同,则使各自的移动速度不同,即产生差速迁移。各组分在两相间经过多次分配,从而达到使混合物分离的目的。
2、输液泵的常见故障及对策:
输液泵/高压泵是保证HPLC系统流路畅通、流量精确和压力稳定的重要仪器部件,目前多用往复式恒流柱塞泵,主要由柱塞杆、密封垫圈和两个单向阀组成,用马达带动凸轮驱动柱塞杆作吸液和排液的往复运动。常分为单柱塞泵、并联柱塞泵、串联柱塞泵和柱塞隔膜泵等类型。流动相混合方式分为低压混合和高压混合。常见泵的故障主要有以下几种,并提供解决的办法。
2.1单向阀故障 由于球与阀座密封不严,液体倒流,造成压力不稳,甚至球与阀座粘在一起阻死。密封不严主要是污染或气泡引起,球与阀座粘连也是由于污染和磨损造成。
为避免单向阀中的宝石球和阀座被污染,流动相应使用HPLC级的溶剂,并且配好的流动相一定要用0.45u滤膜过滤和脱气。如果泵被微粒污染,可分别用水、甲醇、异丙醇、二氯甲烷依次冲洗。冲洗时应打开泄液阀,最后再用所用的溶液冲洗整个系统。
气泡进入阀中会紧贴在阀体的一侧,使宝石球难返回到阀座,引起倒流,泵的压力和流速会明显改变。此时,应立即打开泄液阀,大流量(2ml/min)冲洗泵,直至排除液为直线型。因为甲醇可润湿泵内壁,挤出气泡,故也可使用脱过气的甲醇冲洗泵。长期不用的泵或新装的泵头应该用甲醇赶气泡。泵进气泡也可在泵头上排气泡,即用扳手固定住进气泡的泵头,拧开输出管道的压帽,手动泵送液,可见到气泡从孔中挤压出来,直至无气泡排出将压帽拧紧。
采取上述办法仍不能使压力稳定,应考虑是否密封垫坏了?或单向阀磨损、球不光滑等,需更换部件。
2.2泵垫圈故障泵垫圈常见的故障是渗漏和垫圈受损污染系统。液相色谱系统一般情况下不要使用强酸强碱溶液,因为这会损坏密封垫和柱塞杆。密封垫圈与运动着的柱塞杆紧密接触,可使柱塞在泵头自由运动而流动相不漏出来,它是液相色谱系统中最易磨损的部件。有条件的实验室可三个月更换一次垫圈,防止泵系统污染。如果用缓冲盐作流动相则更会加速垫圈的磨损,应及时冲洗。当垫圈损坏时,表现为:泵压力不稳、泵头漏液。一旦出现这个现象,应尽快更换新垫圈。
为避免上述故障的发生,我们在分析工作中应注意以下几点:
① 使用超纯水(18MΩ.cm)、纯度级别较高的试剂和色谱级溶剂配制流动相;
② 配好的流动相一定要抽滤脱气,即便仪器有在线脱气装置,也可以在上机前进行抽滤。真空抽滤既过滤颗粒也脱了气泡,非常有效。
③ 泵在起动前一定要通过泄液阀抽净泵里的空气。
④ 用缓冲盐洗脱时,分析结束后一定要用水冲洗泵和整个流路系统,不要让腐蚀性溶液滞留泵中,最后用有机溶剂充满系统。
3、色谱分离柱的使用与维护
在前述仪器工作原理部分,我们已经指出,液相色谱仪的分离是在色谱分离柱中实现的。我们目前工作中多采用反相色谱柱,如何保护好分离柱减少柱的污染是延长柱寿命的关键。
3.1怎样维护好色谱分离柱
加保护柱(预柱)是保护分离柱的有效办法。保护柱是根内装填料与分离柱性质相近的短柱,接在分离柱之前,或代替流路过滤器。保护柱的作用是收集和阻塞分离柱口的化学垃圾,这些垃圾如果直接进入分离柱会逐渐堆积在柱头,最终降低柱效能。保护柱是消耗品,如分析血浆样品,一般分析50个样品后需更换新柱芯。
避免高压冲击分离柱。一般色谱柱都能承受得起高压,但经不住突然变化的高压冲击,这将改变柱床体积,影响柱效。引起高压冲击的原因主要有:进样器的样品阀的缓慢转动、泵启动太快、柱切换等操作。用手动进样阀时的压力变化不大,自动进样阀由于切换较慢,可能会造成压力冲击。
合理选择分离柱。我们知道,选择色谱分离柱主要根据两点,一是根据待测组分的分子量的大小;二是根据流动相条件,包括PH值、离子强度和溶剂极性等。传统硅胶基质的键合相柱要求流动相PH值在3-7之间,极端PH值(>8)的流动相能溶解硅胶,使键合相流失。而目前利用先进的杂化颗粒技术研制的高纯硅胶颗粒填料(如Waters公司的XTerra色谱柱),集硅胶和多孔聚合物填料的优点为一体,使有机硅烷单元取代了相当一部分占据颗粒内部和表面位置的硅羟基,使这种新型填料具有分辨率高、稳定性强、PH范围宽(1-12)的优势,其性能突破了传统高效液相色谱柱的极限。所以一定要根据分析的对象、流动相的条件选择合适的分离柱,茫然时可向公司的技术人员咨询。
定期冲洗分离柱。每次分析工作结束时,冲洗完缓冲盐后,最后要过度到用强溶剂冲洗柱子,如可用色谱纯甲醇、乙腈冲洗反相C18柱,目的是冲去吸附在柱上的强保留组分。如果用甲醇/水为流动相也应这样冲洗柱子,在一定程度上可恢复柱效。