频谱分析仪的主要技术指标有频率范围、分辨力、分析谱宽、分析时间、扫频速度、灵敏度、显示方式和假响应。
1、频率范围:
频谱分析仪进行正常工作的频率区间。现代频谱仪的频率范围能从低于1赫直至300吉赫。
2、分辨力:
频谱分析仪在显示器上能够区分最邻近的两条谱线之间频率间隔的能力,是频谱分析仪重要的技术指标。分辨力与滤波器型式、波形因数、带宽、本振稳定度、剩余调频和边带噪声等因素有关,扫频式频谱分析仪的分辨力还与扫描速度有关。分辨带宽越窄越好。现代频谱仪在高频段分辨力为10~100赫。
3、分析谱宽:
又称频率跨度。频谱分析仪在一次测量分析中能显示的频率范围,可等于或小于仪器的频率范围,通常是可调的。
4、分析时间:
完成一次频谱分析所需的时间,它与分析谱宽和分辨力有密切关系。对于实时式频谱分析仪,分析时间不能小于其最窄分辨带宽的倒数。
5、扫频速度:
分析谱宽与分析时间之比,也就是扫频的本振频率变化速率。
6、灵敏度:
频谱分析仪显示微弱信号的能力,受频谱仪内部噪声的限制,通常要求灵敏度越高越好。动态范围指在显示器上可同时观测的较强信号与最弱信号之比。现代频谱分析仪的动态范围可达80分贝。
7、显示方式:
频谱分析仪显示的幅度与输入信号幅度之间的关系。通常有线性显示、平方律显示和对数显示三种方式。
8、假响应:
显示器上出现不应有的谱线。这对超外差系统是不可避免的,应设法抑止到最小,现代频谱分析仪可做到小于-90分贝毫瓦。
余氯分析仪是由传感器和二次表两部分组成的测量仪器,可以同时测量余氯、pH值、温度等,被广泛用于电力、自来水厂、医院等领域中。当余氯分析仪出现故障时,如何诊断?
1.敲击手压法
经常会遇到仪器运行时好时坏的现象,这种现象绝大多数是由于接触不良或虚焊造成的。对于这种情况可以采用敲击与手压法。所谓的“敲击”就是对可能产生故障的部位,通过小橡皮头或其他敲击物轻轻敲打插件板或部件,看看是否会引起出错或停机故障。所谓“手压”就是在故障出现时,关上电源后对插的部件和插头和座重新用手压牢,再开机试试是否会消除故障。如果发现敲打一下机壳正常,再敲打又不正常时,可以先将所有接头重插牢再试、若伤脑筋不成功,只好另想办法了。
2.观察法
利用视觉、嗅觉、触觉。某些时候,损坏了的元件会变色、起泡或出现烧焦的斑点;烧坏的器件会产生一些特殊的气味;短路的芯片会发烫;用肉眼也能观察到虚焊或脱焊处。
3.对比法
要求有两台同型号的仪表,并有一台是正常运行的,使用这种方法还要具备必要的设备,例如,万用表、示波器等。按比较的性质分有,电压比较、波形比较、静态阻抗比较、输出结果比较、电流比较等。具体方法是:让有故障的仪表和正常仪表在相同情况下运行,而后检测一些点的信号再比较所测的两组信号,若有不同,则可以断定故障出在这里。这种方法要求维修人员具有相当的知识和技能。
4.替换法
要求有两台同型号的仪器或有足够的备件。将一个好的备品与故障机上的同一元器件进行替换、看故障是否消除。
5.逻辑排除法
所谓的排除法是通过拔插机内一些插件板、器件来判断故障原因的方法。当拔除某一插件板或器件后仪表恢复正常,就说明故障发生在那里。
其他可能故障原因
在传感探头使用寿命期内,二次仪表设置、自检正常且正确标定之后,仪表异常情况的其他可能原因:
1)加氯机、水射器的氯气管路堵塞、损坏、渗漏;2)水质本身变化;3)仪表安装不正确。
余氯表不能用膜法测量原理的, 只能用裸电极的,这样才能保证测量精度, 而且校准周期较长,精度较高。另外,加药量大是不是因为你的ORP值选择的不合适及控制过程中的PID调节量及调节方法不合适。我知道有一种“中心零”控制方式既可保证脱氯的效果,又可控制加药量为合适的量值。另由于一般比色法和膜电极在低余氯(一般小于0.01ppm)时,不能很好获得测量结果。在电厂反渗透进水余氯非常低,无膜电极法可以分辨到0.001ppm.
以下是不同方法的优缺点,仅供参考:
比色法:实时性差、响应速度为分钟级;系统结构复杂,故障率高;消耗药剂,费用高,维护工作量大。标准DPD方法,是其他方法校准的基础
覆膜电极:不需要试剂,响应速度较快。在含表面活性剂的场合使用时会有漂移,在污水环境中膜孔容易堵塞,需要定期清洗更换隔膜和电解液。
无膜电极:无膜,不受表面活性剂影响,抗污能力强,不需更换电解液。反应速度快,维护清洗更简单,测量更精确。
如果是在普通的自来水或污水处理中的话,测氯离子浓度在1ppm以上的测量都比较准确,但是如果是用在电厂的测氯离子的话就测不出来的,使用余氯传感器必须整套使用,就是仪表+恒流器+探头,才能稳定的使用。
下一篇:恒温水浴的操作使用及注意事项