X
你好,欢迎来到仪多多。请登录 免费注册
仪器交易网
0我的购物车 >
购物车中还没有商品,赶紧选购吧!

【流量计】电磁流量计典型故障诊断及处理 流量计维修保养

时间:2020-05-12    来源:仪多多仪器网    作者:仪多多商城     



    1. 无流量输出。检查电源部分是否存在故障,测试电源电压是否正常;测试保险丝通断;检查传感器箭头是否与流体流向一致,如不一致调换传感器安装方向;检查传感器是否充满流体,如没有充满流体,更换管道或垂直安装。

    2. 信号越来越小或突然下降。测试两电极间绝缘是否破坏或被短路,两电极间电阻值正常在(70~100)Ω之间;测量管内壁可能沉积污垢,应清洗和擦拭电极,切勿划伤内衬。测量管衬里是否破坏,如破坏应予以更换。

    3. 零点不稳定,检查介质是否充满测量管及介质中是否存在气泡,如有气泡可在上游加装消气器,如水平安装可改成垂直安装;检查仪表接地是否完好,如不好,应进行三级接地(接地电阻≤100Ω);检查介质电导率应不小于5μs/cm;检查介质是否淤积于测量管中,清除时注意不要将内衬划伤。

    4. 流量指示值与实际值不符。检查传感器中的流体是否充满管,有无气泡,如有气泡可在上游加装消气器;检查各接地情况是否良好;检查流量计上游是否有阀,如有,移至下游或使之全开;检查转换器量程设定是否正确,如不对,重新设定正确量程。

    5. 示值在某一区间波动。检查环境条件是否发生变化,如出现新干扰源及其他影响仪表正常工作的磁源或震动等,应及时清除干扰或将流量计移位;检查测试信号电缆,用绝缘胶带进行端部处理,使导线、内屏蔽层、外屏蔽层、壳体之间不相互接触。

    选用电磁流量计测量流量的流体必须是导电的,因此不导电的气体、蒸汽、油类、丙铜等物质不能选用电磁流量计测量流量。

    运行故障

    经初期调试并正常运行一段时期后在运行期间出现的故障,常见故障原因有:流量传感器内壁附着层,雷电击,环境条件变化。

    1、内壁附着层

    由于电磁流量计测量含有悬浮固相或污脏体的机会远比其他流量仪表多,出现内壁附着层产生的故障概率也就相对较高。若附着层电导率与液体电导率相近,仪表还能正常输出信号,只是改变流通面积,形成测量误差的隐性故障;若是高电导率附着层,电极间电动势将被短路;若是绝缘性附着层,电极表面被绝缘而断开测量电路。后两种现象均会使仪表无法工作。

    2、雷电击

    雷电击在线路中感应瞬时高电压和浪涌电流,进入仪表就会损坏仪表。雷电击损仪表有3条引入途径:电源线,传感器勺转换器间的流量信号线和激磁线。然而从雷电故障中损坏零部件的分析,引起故障的感应高电压和浪涌电流大部分足从控制室电源线路引入的,其他两条途径较少。还从发生雷击事故现场了解到,不仅电磁流量计出现故障,控制室中其他仪表电常常同时出现雷击事故。因此使用单位要认识设置控制室仪表电源线防雷设施的重要性。现任已有若于设计单位队识和探索解决这一问题,如齐鲁石化设计院[1]。

    3、环境条件变化

    主要原因同上节调试期故障环境方面,只是干扰源不在调试期出现而在运行期间再介入的。例如一台接地保护并不理想的电磁流量计,调试期因无厂扰源,仪表运行正常,然而在运行期出现新干扰源(例如测量点附近管道或较远处实施管道电焊)干扰仪表正常运行,出现输出信号大幅度波动。

   






电磁流量计电极四氟衬里加工工艺方法

    电磁流量计测量中,电解质流体对金属电极的电化学反应会产生直流极化电压。这种与流速无关的电压被称为流体噪声。流体噪声一直是电磁流量计要解决的重要技术问题之一,从1832年法拉第第一次应用地磁场和电磁感应方法测量泰晤士河流速,到今天人们广泛地应用电磁流量计测量导电液体流量,电磁流量计的流体噪声问题一直是一个困扰。尤其在进入低频矩形波励磁时代以来,流体噪声的影响表现得更为突出。往往有些新装配的流量计受电极极化的影响,输出摆动需要经过长时间在水中浸泡才能消除。流体噪声的大小直接影响到流量计测量的灵敏度、线性度和稳定性,因此如何深入研究流体噪声,探寻其产生的原因,找到降低流体噪声的方法,提高传感器信噪比,特别是对微弱励磁电流(电磁水表、两线制电磁流量计)的发展和低流速(0.1m/s以下)及高流速(15m/s以上)流量测量范围的扩展具有重大意义。

    提高电磁流量计衬里和电极的加工粗糙度水平,不仅改善了产品的外观性能,更重要的是从本质上降低了流体噪声产生的几率和幅度,从而提高流量计测量的灵敏度和稳定性。本文从传感器衬里和电极粗糙度引起电磁流量计动态零点的流体噪声分类、产生,引导出能够降低流体噪声提高信噪比的重要措施。进而介绍电磁流量计传感器制造中一些关键工艺措施,希望对提高我国电磁流量计制造水平和产品竞争能力起到一定帮助作用。

    1.流体噪声:

    电磁流量计在应用中除了受周围环境条件,电磁场、静电场等因素产生的噪声影响外,被测介质的流体噪声也是非常重要的影响因素。流体噪声是一种直流极化电压,在低频矩形波励磁方式中尤为突出,常有:浆液噪声、流动噪声和高端流速噪声。

    流体噪声的产生原因有下面几种情况:

    (1)不锈钢电极的耐腐蚀是在其表面具有一个极薄的钝化层,使得电化学反应达到平衡状态。如图1所示,流体中的固体物撞击电极,使得电极表面钝化层被破坏,失掉电化学平衡。而金属材料与流体介质接触具有重新恢复生成表面钝化层保持电化学平衡的能力。在达到点化学平衡期间,金属和流体中的游离离子在信号电场作用下不断进行着电化学反应。固体颗粒撞击电极,不断破坏保护的钝化层;电化学反应又反复生成钝化层,于是形成了电极间的电位不断大幅地度变化,这种变化的电位造成流量信号中的流体噪声。这种情况也即电磁流量计中通常讲的浆液噪声。理论和实践表明,影响电化学反应信号电场变化的频率升高,可使流体噪声幅度迅速下降,这就是高频励磁和双频励磁可以解决浆液测量的原因。

    (2)流体摩擦衬里和电极,流体中发生的正、负离子从电解质流体中分离。衬里和电极表面越粗糙,游离的离子浓度就越高。见图2,受电极信号电场的作用,一部分离子会向电极移动,形成噪声电压,这种噪声被称为流动噪声。流动噪声在低电导率测量时表现比较突出。流动噪声与外电场强度有关,高流速时感应信号越大,噪声幅度也越大,输出就会很不稳定。

    (3)流体电导率和pH值的急剧变化也会形成流动噪声,流量计上游加药表现的测量不稳定就是典型例子。原因是不同介质在不均匀混合时,流体中容易分离出正、负离子,受电极信号电场的作用,一部分离子会向电极移动,形成了流动噪声电压,造成输出的不稳定。

    (4)由于高流速流动流体靠近衬里和电磁流量计电极部位的层流边界层厚度变得很薄,如图3所示,衬里和电极的粗糙度高度突破了流速层流边界层的厚度,流体撞击这部分粗糙度高度,发生流速发散和突变。有一部分与测量管中心轴方向相同(或相反)的流速分量,受信号权重函数的作用,对电极信号产生了很大影响,形成了大的正误差,这就是高端流速噪声。

    可见,上述流体噪声中的流动噪声和高端流速噪声与测量管的衬里和电极表面粗糙度直接有关,极化电压产生的浆液噪声与电极表面粗糙度也有很大关系。

    2.金属电极抗流体腐蚀钝化膜的形成:

    不锈钢电极的抗腐蚀性能,主要是由于表面覆盖着一层极薄(约1nm厚)致密的钝化膜。这层钝化膜隔离腐蚀性流体介质,是不锈钢电极防护的基本屏障。不锈钢电极钝化具有动态特征,不应看作腐蚀完全停止,而是形成扩散的阻挡层,使阳极反应速度大大降低。对不锈钢电极,通常在有还原剂(如氯离子)情况下倾向于破坏钝化膜,而在氧化剂(如空气和水)存在时能保持或修复钝化膜。不锈钢电极放置于空气和水中会形成氧化膜,但这种膜的保护性不够完善,速度也很慢。图4为不锈钢电极用XPS(X-ray photoelectron spectroscopy)光电能谱设备进行的表面化学分析量化图。左图是未经工艺处理的电极表面向内不同深度主要元素铬(Cr)、氧(O)、铁(Fe)的含量比率。可以看到,在深度约1nm位置铬的含量约20%,即表示钝化膜为贫铬层。右图为经过机械研磨抛光或酸洗、化学抛光等工序进行钝化处理工艺措施,使铁与铁的氧化物比铬与铬的氧化物优先溶解,去掉了贫铬层,造成铬在不锈钢表面的富集,在深度约1nm位置铬的含量约达30%。这种富铬钝化膜的极化电位(SCE)可达+1.0V,接近贵金属金、铂的极化电位,因此,不锈钢得以提高抗腐蚀的稳定性。不同的钝化处理方法也会影响膜的成分与结构,从而影响不锈性。如通过电化学改性处理,可使钝化膜具有多层结构,在阻挡层形成CrO3或Cr2O3,或形成玻璃态的氧化膜,使不锈钢能发挥最大的耐蚀性。广州明柏仪表厂专供

    不锈钢电极的耐腐蚀主要依靠表面钝化膜,如果钝化膜不完整或有缺陷,不锈钢仍会被腐蚀,当然仍然会出现流体噪声。电极在加工成形、组装及安装标记等过程中会带来表面油污、铁锈、非金属脏物、低熔点金属污染物、油漆、焊渣与飞溅物等,这些物质影响了不锈钢电极的表面质量,破坏了其表面的氧化膜,降低了不绣钢的抗全面腐蚀性能,也形成流体噪声的产生,影响到流量计测量的稳定性。所以改善电极装配前的工艺处理和存放、装配的工艺方法,保护好钝化膜是电磁流量计制造中重要技术之一。

    3.衬里和电极的表面粗糙度对流体噪声的影响:

    流体噪声的高低与衬里和电极表面的粗糙度有关。无论对浆液噪声、流动噪声和流速高端噪声这种关系都很密切。

    很明显,粗糙的衬里和电极表面会加大对流体的摩擦力,容易引起流体中离子分离的加剧,给流动噪声产生创造条件。光滑的衬里和电极表面能够让流体顺滑流过,减小流体与衬里和电极的摩擦力,因此离子分离的机会将大大减少,流动噪声也将减小。可以想象流体流动速度加快,衬里和电极对流体的摩擦力也会加大,流体中离子分离同样会加剧。再加上流体流速的加快,感应电势增大,电场对离子运动的作用力增大,因此流动噪声要增大。所以,在有流动噪声的情况下流量计使用流速不宜过高。

    参考文献曾经讨论过高雷诺数(即高流速)下电磁流量计测量管粗糙度对测量的影响,图5所示出不同衬里材料(主要表面粗糙度不同)的误差差别。可以看出,横河加不锈钢网的PFA衬里由于粗糙度最低,刚度好,试验条件下未出现高端流速噪声形成误差;橡胶衬里的粗糙度最高,出现高端流速噪声误差组较早;聚氨酯衬里尽管出现高端流速噪声晚一些,但由于其强度不高,产生的误差幅度最大。这说明衬里和电极粗糙度是产生高端流速噪声的重要原因。

    对于浆液噪声,由于电极表面覆盖的一层钝化膜仅有约1nm厚,如果电极本身粗糙度较高,表面高低不平,钝化膜就很难达到致密和厚薄均匀,这将对膜的稳定性受到影响,进而也会影响到膜的保持和修复。流体和电极的电化学反应就会不断进行,就难以做到稳定的测量浆液流体。也就是说,电极表面的粗糙度高低,也直接影响到浆液噪声的产生与消除。

    4.衬里和电极加工工艺方法:

    4.1 衬里

    为满足测量管粗糙度要求,电磁流量计需要根据流体种类选用优良的衬里材料。对不同的衬里材料更需要采用优良的加工工艺方法。目前常用的衬里材料有:氯丁橡胶、EPDM橡胶、聚氨酯、氟塑料PTFE和PFA。这里简述不同衬里的工艺要点,提请流量计制造者参考。

    氯丁橡胶适于DN300以上大口径传感器,多用于测量水、污水、弱酸、弱碱介质流体。一般直接用胶片粘接貼附在不锈钢导管内壁,通过硫化制成。这种工艺,橡胶衬里的表面粗糙度一般比较高,操作时应特别注意搭接缝处的平整,但相对粗糙度要低。用于小口径的氯丁橡胶和EPDM橡胶衬里,则可以使用模具加压,貼附在导管内壁然后硫化,降低衬里表面粗糙度取决于模具芯棒的表面粗糙度和加压及硫化工艺。

    当前,国内聚氨酯衬里多使用的是软质材料,采用浇灌的工艺办法,衬里粗糙度不仅取决于芯棒模具表面粗糙度,也会受到浇灌、排气、加热、冷却和材料成分、比例的影响。国外硬质聚氨酯多采用聚氨基甲酸乙脂橡胶,其成形的重要工艺要点是,除去注入过程中卷入的气泡、使化学反应(硬化、交联)得以稳定进行;采用离心浇注的工艺方法:保证原料在保管时处于干燥状态,均匀、顺滑地对原料进行混合、搅拌,为除去卷入原料的气泡,设定适当导管的旋转速度,良好地控制原料处理、硬化、交联的温度。

    要求粗糙度低的衬里材料应使用氟塑料。用于配管、罐等容器的PTFE氟塑料衬里,通常是在金属管内衬入一个薄壁聚四氟乙烯管,或者是采用将聚四氟乙烯管插入,然后进行粘接的工艺方法。这种衬里主要的缺点是耐负压不高,受温度影响大,粘接往往不可靠。对于电磁流量计,优良的氟塑料衬里是PFA。PFA主要采用的办法是注入熔融树脂,而后注塑(射出注塑法)。采用射出注塑法,属无接缝一体成形。PFA衬里的品质具有良好的耐化学药品性、耐热性、耐附着性(表面光洁度)。尤其是在耐化学药品性、耐热性方面,运用独特的制造技术,可减少内部应力与内在气泡,以避免产生裂纹,这样使流量计用在严酷的环境下时,仍具有很高的可靠性。为此,在PFA衬里制造过程中,重要的管理点是对注塑温度(树脂粘度、金属模具温度)、金属模具的冷却控制(冷却时间、温度)、树脂的压力控制。注塑温度设定要尽可能低,以减少PFA树脂的热劣化。注塑中,金属模具的温度要均匀地保持大于树脂熔点。由于需要进行高精度冷却控制,故应在金属模具中设置多个冷却回路,并进行相互独立的冷却控制操作。在进行冷却控制的同时,还应对树脂压力进行控制。

    4.2 电极

    电极处理包括抛光和钝化工艺。抛光有三种方法,机械抛光是不锈钢抛光的三种抛光(即机械抛光,化学抛光和电化学抛光)的第一道工序。接下来两者相结合,如机械抛光—化学抛光或机械抛光—电化学抛光。机械抛光用于初级抛光,将电极表面凹凸的不平度加工到一定的粗糙度,然后再进行化学抛光或电化学抛光。化学抛光和电化学抛光可以除去电极表面微观不平度,从而提高到镜面光亮,同时可以完成抛光和钝化两道工艺的目的,增加表面了铬含量,形成良好的钝化层。对于毛坯表面由于存在宏观不平度,要先用机械抛光方法达到Ra≤0.8?m的粗糙度,再用化学抛光或电化学抛光方法提升到Ra=0.05?m 以上的粗糙度,才能获取最后的光亮度,镜面光泽和良好的钝化层。

    经过抛光和钝化处理的电极能够形成稳定的钝化层。但在储存、转运、装配时,一定要注意保持表面钝化层不被破坏。与电磁流量计传感器传统地、简单地采用在水中浸泡(有时这种方法需要几天几夜时间),自然形成钝化层生产方式相比,经过抛光和钝化工艺处理的电极,能够获得稳定抗腐蚀性能的电极,相当高地提高了生产效率,是一种先进的生产工艺。


标签: 电磁流量计
电磁流量计 电磁流量计电极四氟衬里加工工艺方法_电磁流量计

安装电磁流量计时应注意的问题

  电磁流量计是根据法拉第电磁感应定律进行流量测量的流量计。优点是压损极小,可测流量范围大。最大流量与最小流量的比值一般为20:1以上,适用的工业管径范围宽,最大可达3m,输出信号和被测流量成线性,精确度较高,可测量电导率≥5μs/cm的酸、碱、盐溶液、水、污水、腐蚀性液体以及泥浆、矿浆、纸浆等的流体流量。但它不能测量气体、蒸汽以及纯净水的流量。

  因为电磁流量计的一些列优点,用电磁流量计的企业现在增多了,那么如何安装电磁流量计,怎样的电磁流量计安装要求才能让它更好,使用更加准确,更加安全。

  电磁流量计的安装非常重要,其实在安装中如何使电磁流量计更好的接地也是一个非常重要的问题。对此,我们在安装电磁流量计时应注意以下几个问题:

  1)传感器和转换器的接地端必须与被测介质同电位。

  2)以大地为零电位,减少外界干扰。由于一般的工艺管道都是金属管且本身都是接地的,因此这个要求比较容易完成,但是如果外界的电磁干扰比较大的话,那么就要重新设置接地设置,且接地线要采用截面大于5mm2的多股铜线才可,同时不能接在电机或公共地线上,用以避免漏电流的干扰。

  3)传感器在金属管道上安装(金属管道内壁没有绝缘涂层)

  4)安装在塑料管道或有绝缘衬里的管道上时,传感器的两端必须安装接地环、接地法兰或带有接地电极的短管才行。

  5)管道里的流介质与大地短路,具有零电位,不然电磁流量计就无法进行正常工作了。

  电磁流量计的安装就先介绍到这里,后面会不定时的发布一些经验与大家交流。如有疑问,欢迎来电咨询,西派集团有限公司 韩经理

标签: 电磁流量计
电磁流量计 安装电磁流量计时应注意的问题_电磁流量计

上一篇:【变压器】变压器变比组别测试仪...

下一篇:分享:初步判断仪器设备故障的1...

  • 手机多多
  • 官方微信订阅号
商品已成功加入购物车!