红外光谱仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。
红外光谱仪的保养操作步骤:
1、测定时实验室的温度应在15~30℃,相对湿度应在65%以下,所用电源应配备有稳压装置和接地线。室内一定要有除湿装置,严格控制室内的相对湿度,因此红外实验室的面积不要太大,能放得下必须的仪器设备即可。
2、如所用的是单光朿型傅里叶红外分光光度计(目前应用较多),实验室里的CO2含量不能太高,因此实验室里的人数应尽量少,无关人员可以不要进入,还要注意适当通风换气。
3、为防止仪器受潮而影响使用寿命,红外实验室应保持干燥,即使仪器经常不用,也应每周开机至少两次,每次半天,同时开除湿机除湿。特别是霉雨季节,可以是能每天开除湿机。
4、如供试品为盐酸盐,因在压片过程中可能出现离子交换现象,标准规定用氯化钾(也同溴化钾一样预处理后使用)代替溴化钾进行压片,但也可比较氯化钾压片和溴化钾压片后测得的光谱,如二者没有区别,则可使用溴化钾进行压片。
5、红外光谱测定常用的试样制备方法是溴化钾(KBr)压片法(药典收载品种90%以上用此法),因此为减少对测定的影响,所用KBr可以应为光学试剂级,至少也要分析纯级。使用前应适当研细(200目以下),并在120℃以上烘4小时以上后置干燥器中备用。如发现结块,则应重新干燥。制备好的空KBr片应透明,与空气相比,透光率应在75%以上。
6、压片法时取用的供试品量一般为1~2mg,因为不可能用天平称量后加入,并且每种样品的对红外光的吸收程度不一致,故常凭经验取用。一般在得到的光谱图中绝大多数吸收峰处于10%~80%透光率范围在内。较强吸收峰的透光率如太大(如大于30%),则说明取样量太少;相反,如较强吸收峰为接近透光率为0%,且为平头峰,则说明取样量太多,此时均应调整取样量后重新测定。
7、测定用样品应干燥,否则应在研细后置红外灯下烘几分钟使其干燥。试样研好并在模具中装好后,应与真空泵相连后抽真空至少2分钟,以使试样中的水分进一步被抽走,然后再加压到0.8~1GPa(8~10T/cm2)后维持2~5min。不抽真空将影响片子的透明度。
8、压片时KBr的取用量一般为200mg左右(一般凭经验),应根据制片后的片子厚度来控制KBr的量,一般片子厚度应在0.5mm以下,厚度大于0.5mm时,常可在光谱上观察到干涉条纹,对供试品光谱会产生干扰。
9、压片时,应先取供试品研细后再加入KBr再次研细研匀,这样比较容易混匀。研磨所用的应为玛瑙研钵,因玻璃研钵内表面比较粗糙,易粘附样品。研磨时应按同一方向(顺时针或逆时针)均匀用力,如不按同一方向研磨,有可能在研磨过程中使供试品产生转晶,从而影响测定结果。研磨力度不用太大,研磨到试样中不再有肉眼可见的小粒子即可。试样研好后,应通过一小的漏斗倒入到压片模具中(因模具口较小,直接倒入较难),并尽量把试样铺均匀,否则压片后试样少的地方的透明度要比试样多的地方的低,并会对测定产生影响。另外,如压好的片子上出现不透明的小白点,则说明研好的试样中有未研细的小粒子,应重新压片。
10、压片用模具用后应立即把各部分擦干净,必要时用水清洗干净并擦干,置干燥器中保存,以兔锈蚀。
原子吸收分光光度计测定法由于其本身所具有的许多优点,已经在冶金、地质、化工、农业、医药、环保等各个领域获得了广泛的应用。尽管预处理的方法因试样性质不同而不同,但无论试样是固体还是液体,是无机物还是有机物,都不妨碍用原子吸收分光光度法来进行测定。元素周期表上的大多数元素都可以用原子吸收分光光度法来进行测定。
1、碱金属检测
碱金属(Li,Na,K,Rb,Cs)是用原子吸收分光光度法测定的灵敏度很高的一类元素。碱金属的沸点较低,通过火焰区能立刻蒸发产生背景吸收;
2、碱土金属检测
碱土金属元素(Be,Mg,Ca,Sr,Ba)在火焰中易生成氧化物和少量的MOH型化合物,原子化效率强烈地依赖于火焰组成和火焰高度,因此,必须仔细地控制燃气和助燃气的比例,恰当地调节燃烧器的高度。
3、有色金属检测
这一组元素包括Cu,Zn,Cd,Hg,Sn,Pb,Sb,Bi等。
4、黑色金属检测
这一组元素包括Fe,Ni,Cr,Mo,Mn等。在合金中,这些元素常共存在一起。
5、贵金属检测
贵金属在某些试样中含量很低,一般要经过化学富集之后才能进行检测。
6、难熔元素检测
这组元素包括B,Be,Si,Ge,V,Nb,Ta,W,Th,U,Re,Sc,Y和稀土元素。它们容易形成难离解的耐熔氧化物,必须在强还原性空气—乙炔火焰中进行测定。
直读光谱仪广泛应用于铸造,钢铁,金属回收和冶炼以及军工、航天航空、电力、化工、高等院校和商检,质检等单位。直读光谱仪,即原子发射光谱仪,市场对钢铁检测有巨大的需求,也促进了相关检测仪器的发展。
六十年代光电直读光谱仪,随着计算机技术的发展开始迅速发展,由于计算机技术的发展,电子技术的发展,电子计算机的小型化及微处理机的出现和普及,成本降低等原因、于上世纪的七十年代光谱仪器几乎100%地采用计算机控制,这不仅提高了分析精度和速度,而且对分析结果的数据处理和分析过程实现自动化控制。
直读光谱仪品种分类
直读光谱仪品种分为火花直读光谱仪,光电直读光谱仪,原子发射光谱仪,原子吸收光谱仪,手持式光谱仪,便携式光谱仪,能量色散光谱仪,真空直读光谱仪,直读光谱仪分为台式机和立式机。
直读光谱仪和ICP都属于发射光谱分析仪器,区别在于他们的激发方式不同,ICP中文名字是电感耦合等离子体,是通过线圈磁场达到高温使样品的状态呈等离子态然后进行测量的,而直读光谱仪一般采用电火花,电弧或者辉光放电的方式把样品打成蒸气进行激发的,在效果上ICP要比直读光谱仪器的检出限小,精度高,但是在进样系统上要求非常严格,没有好的进样系统就只能做溶液样品.部分国外先进的ICP可以做固体样品,例如热电ICP。
特点:
直读光谱仪具有以下特点。
①自动化程度高、选择性好、操作简单、分析速度快,可同时进行多元素定量分析。从炉中取的样品只要打磨掉表面氧化层,固体样品即可放在样品台上激发,免去了化学分析钻取试样的麻烦。对于铝及铜、锌等有色金属样品而言,可用小车床车铣去表面氧化层,从预燃样品到得到最终的分析结果仅需20~30s,速度非常快,有利于冶炼控制,降低成本。特别是对那些容易烧损的元素,更便于控制其最后的成分。样品中所有分析元素(几个甚至几十个)可以一次同时分析出来。
②元素测试范围宽,由于PMT或半导体检测器对信号的放大能力很强,对于强度不同的谱线可以选用不同的方法倍率的PMT或固体检测器(在使用不同谱线的情况下相差4个数量级,比如普碳钢中的铬含量一般为万分之一水平,而不锈钢中的铬元素含量在10%以上)。因此可以采用同一分析条件对样品中含量相差悬殊的很多元素从高含量到痕量可同时进行测定。
③分析精度高,能有效控制产品的化学成分,可见昂贵的合金成分控制到产品规格的中下限,仪节省相应合金的消耗。
④检测限低。直读光谱法的灵敏度与光源性质、仪器状态、试样组成及元素性质等均有关。一般对固体金属、合金采用火花源时,检出限可达0.1~10ug/g,对C、S、P等非金属元素也具有较好的检出限
⑤在某些条件下,可测定元素的存在方式,如测定钢铁中酸溶铝、酸不熔铝等。
⑥测量范围广,几乎所有金属材料都可以检测,检测的基体有铁基、铝基、铜基、钴基、钛基、镁基、锌基、铅基、锡基、金基、银基铂基、钌基等。
不足之处在于,直读光谱分析仍是一种相对分析方法,试样组成、结果状态、激发条件等难以完全控制,一般需用一套基体成分基本相同的标准样品进行匹配,有些情况下标准样品的获得几乎不可能的,因此使直读的分析应用受到一定限制;对元素的价态测量无能为力,有待于与其他分析方法配用;它是一种表面分析仪器,仅能分析金属表面1mm以内的样品,适合于均相样品检测对元素含量分布不均的样品(如偏析),若需要得到能够代表样品的检测结果只能在样品前处理方面变通,比方说样品钻屑后在保护气氛下重新熔融制成均匀性试样等,往往用在它不是一种仲裁分析方法,一旦贸易双方对货物的品质有疑义,需要采用其他方法获得最终结果。