激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。
由于激光具有很好的单色性和极强的方向性,所以在没有阻碍的无限空间中激光将会照射到无穷远的地方,并且在传播过程中很少有发散的现象。
激光粒度仪的光路由发射、接受和测量窗口等三部分组成。
发射部分由光源和光束处理器件组成,主要是为仪器提供单色的平行光作为照明光。
接收器是仪器光学结构的关键。测量窗口主要是让被测样品在完全分散的悬浮状态下通过测量区,以便仪器获得样品的粒度信息。
激光粒度仪系列产品采用全程米氏理论和多种分布模型的数据处理方式,使该仪器具有准确可靠、测试速度快、重复性好、操作简便等突出特点。
下面介绍下仪器的日常维护:
在日常存放和使用仪器时,以下几点都是必须做到的:
1、仪器的全套设备不论是否处于工作状态,都应放置在清洁干燥的环境中。
2、粒度仪的全套设备不用时应盖上致密的防尘布。
3、当测完一种样品,必须取下进样料斗,让仪器自动执行清洗料仓程序,确保下一种样品的测量的可靠性。
并且用毛刷清除进样料斗上的残余样品。
4、粒度仪测量单元连续开机时间不宜超过5小时。
5、空气压缩机应参照说明书定期更换机油。
6、吸尘器收到的测试废料要定期清理。或当仪器指示负压不足时,必须清理。
7、计算机关机必须按规定的步骤进行,切不可贸然关断电源,否则可能造成难以弥补的损失。
1.镜头和测试窗口玻璃污染
光学仪器的镜头污染是常见故障。激光粒度仪作为粉体检测设备,常常会面对多尘环境,测试窗口镜片则是会直接接触粉体样品的光学器件。聚焦透镜或者准直透镜等光学镜片受到使用环境中的浮尘污染或者发生霉菌污染,会使纯净的测量光束产生杂散光。这些杂散光会混入样品的散射光中干扰测试;测量窗口镜片上的污染物则会直接产生较强的散射光。
因此,光学镜片污染是激光粒度仪测试结果漂移的首要元凶。应对办法主要是尽量让仪器处于干燥无尘的工作环境。经常按照操作规程清洗镜片,保证光学镜片的清洁。
2.激光光路偏移
激光器是会发热的器件,工作周期内,它们会周而复始的发热-降温-发热。任何物体都会有热胀冷缩现象,几何尺寸会随温度变化而变化。而激光粒度仪光路装配精度要求非常高,随着仪器使用周期延长,光路几乎不可避免的会出现偏移现象。光路偏移,会导致测量光束光能衰减、探测器排布角度发生漂移,从而导致测量数据漂移。
应对这个问题主要靠仪器制造商从仪器设计上尽量减少出现光路偏移的可能性,同时定期校准光路也是非常重要的办法。
3.进样系统的循环、分散效能波动
这个环节导致的数据漂移比较隐蔽,所以容易被忽视。样品循环系统使用的介质特性、介质流速(干法仪器而言则是气压和气流量)、超声分散设备的工况、水泵转速这几个要点会明显影响测试数据,需要细心关注。应对这些问题的主要办法或者方法如下:
3.1.关注测试用水的质量,特别是那些以自来水为介质的用户。
3.2.干法仪器用户则需定期检查和维护保养空压机,空气过滤装置,收尘装置。保证分散样品的高压空气质量。
3.3.关注超声分散设备功率输出是否正常。
3.4.观察进样器的运转情况,发现有转速波动情况,及时维护。
4.光电探测器及其放大电路参数漂移
这类问题应该属于仪器制造质量水平问题,一般来说任何电子电路和光电探测器都有工况漂移问题,差别只是漂移量不同。这类问题通常仪器用户自己是无法解决的,需要仪器制造商对仪器进行专门的电路工况系数校准。某些高水平的仪器,能够自行校准自身电路工况漂移。
5.测量参数、测量条件变动
分析模型、样品测量参数、测试环境(例如湿度、测试介质温度等)都有可能影响测试数据。我们首先要保证测试的分析模型、样品测量参数(特别是样品折射率)选择正确。测试环境的影响,视不同样品和仪器工作环境不同,影响也差别很大,很难简单举例说明。需要具体情况具体分析。
6.其它类特殊情况影响
6.1.镜片结雾问题。这个问题通常发生在春季潮湿季节或者是使用地下水做测试的用户。测量窗口镜片温度远低于室温时,很容易结雾。这个是固有的物理现象,只能是提高测试介质温度来解决。
6.2.激光器老化,导致光能波动大。这种情况需要更换激光器。
6.3.分散剂过期失效,这个问题比较隐蔽,但是也偶有遇到。应对办法当然是关注分散剂保存环境及其保质期限。
ISO13320是对激光粒度分析仪的基本要求,正确地应用激光粒度分析仪准确测试出样品的粒度及其分布,需要关注以下几个问题。
1)粒度测量范围:每个粒度仪都有自己的测量范围和适用范围,并不是测量范围越宽越好。
2)激光光源及检测器:激光光源为气体光源或固体光源,气体光源稳定性好于固体光源,但一般波长较短。光源功率越大,则散射光的能量越大,仪器的灵敏度越高。激光衍射的光环半径随粒子的减小而增大,但随着光环半径的增加,光强减弱,衍射光强的信噪比降低,容易发生小粒子的漏检。检测仪的一项关键指标就是对小粒子分布的检测能力。
有些仪器设计了特殊的检测器,比如MS2000将检测器设计成非均匀交叉排列的三维扇形结构,这种结构可以达到175个环形或十字形布局或93个半圆形布局的效果,检测角覆盖范围135°无信号盲区。
3)检测理论及数据处理方法:有的粒度检测仪运用Mie光散射原理,数据运算量大,算法相对复杂,但运算效果好;有些粒度仪采用近似的Mie光散射理论,数据处理量小,但处理效果欠佳,适用范围相对较窄,存在对粒子漏检的缺点。
4)准确性、重复性、稳定性:这几项都是选择仪器时的主要指标,特别是仪器的稳定性,通常选用合理的激光器、优化设计光路、配备精密高效的分散器来提高系统的稳定性。
5)扫描速度:扫描速度不仅影响到检测速度,提高扫描速度还能够提高检测数据的重复性和准确性指标。
6)自动化、模块化、智能化:设计人性化、实现自动对中、自动校正、操作智能化、使用方便、免维护等都是用户对仪器的要求。
7)分散器:只有经过充分的分散,才能保证真实准确的测量结果。具有分散功能的粒度分析仪选用的湿法分散器通常为连续可调的超声分散器和搅拌分散器;选用的干法分散器通常为密闭式测量分散器或喷射式分散器。