X
你好,欢迎来到仪多多。请登录 免费注册
仪器交易网
0我的购物车 >
购物车中还没有商品,赶紧选购吧!

红外光谱分析步骤 红外光谱工作原理

时间:2020-05-14    来源:仪多多仪器网    作者:仪多多商城     

    红外光谱法是利用物质分子对红外辐射的吸收,并由其振动或转动运动引起偶极矩的精变化,产生分子振动和转动能级从基态到激发态的跃迁,得到由分子振动能级和转动能级变化产生的振动-转动光谱,又称为红外光谱。

    红外光谱法是一种鉴别化合物和确定物质分子结构的常用分析手段,不仅可以对物质进行定性分析,还可对单一组分或混合物中各组分进行定量分析,尤其是在对于一些较难分离并在紫外、可见区找不到明显特征峰的样品,可以方便、迅速地完成定量分析。

    红外光谱分析步骤

    1.首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度=(2C+2-H-Cl+N)/2其中:Cl为卤素原子。例如:比如苯:C6H6,不饱和度=(2*6+2-6)/2=4,3个双键加一个环,正好为4个不饱和度。

    2.分析3300~2800cm-1区域C-H伸缩振动吸收;以3000cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物,而低于3000cm-1一般为饱和C-H伸缩振动吸收。

    3.若在稍高于3000cm-1有吸收,则应在2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:?炔2200~2100cm-1,烯1680~1640cm-1,芳环1600,1580,1500,1450cm-1泛峰。若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反;邻、间、对)。

    4.碳骨架类型确定后,再依据其他官能团,如C=O,O-H,C-N等特征吸收来判定化合物的官能团。

    5.解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在。

近红外光谱仪的两种分析方法

  近红外光谱仪主要是依靠近红外光谱原理来进来一系列的测量,而近红外光谱又是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,记录的主要是含氢基团X-H(X=C、N、O)振动的倍频和合频吸收。不同团(如甲基、亚甲基,苯环等)或同一基团在不同化学环境中的近红外吸收波长与强度都有明显差别,NIR光谱具有丰富的结构和组成信息,非常适合用于碳氢有机物质的组成与性质测量。但在NIR区域,吸收强度弱,灵敏度相对较低,吸收带较宽且重叠严重。  因此,依靠传统的建立工作曲线方法进行定量分析是十分困难的,化学计量学的发展为这一问题的解决奠定了数学基础。其工作原理是,如果样品的组成相同,则其光谱也相同,反之亦然。如果我们建立了光谱与待测参数之间的对应关系(称为分析模型),那么,只要测得样品的光谱,通过光谱和上述对应关系,就能很快得到所需要的质量参数数据。分析方法包括校正和预测两个过程:  (1)在校正过程中,收集一定量有代表性的样品(一般需要80个样品以上),在测量其光谱图的同时,根据需要使用有关标准分析方法进行测量,得到样品的各种质量参数,称之为参考数据。通过化学计量学对光谱进行处理,并将其与参考数据关联,这样在光谱图和其参考数据之间建立起一一对应映射关系,通常称之为模型。虽然建立模型所使用的样本数目很有限,但通过化学计量学处理得到的模型应具有较强的普适性。对于建立模型所使用的校正方法视样品光谱与待分析的性质关系不同而异,常用的有多元线性回归,主成分回归,偏最小二乘,人工神经网络和拓扑方法等。  显然,模型所适用的范围越宽越好,但是模型的范围大小与建立模型所使用的校正方法有关,与待测的性质数据有关,还与测量所要求达到的分析精度范围有关。实际应用中,建立模型都是通过化学计量学软件实现的,并且有严格的规范(如ASTM6500标准)。  (2)在预测过程中,首先使用近红外光谱仪测定待测样品的光谱图,通过软件自动对模型库进行检索,选择正确模型计算待测质量参数。

标签: 近红外光谱仪
近红外光谱仪 近红外光谱仪的两种分析方法_近红外光谱仪

近红外光谱的工作原理阐述

    近红外光谱主要是由于分子振动的非谐振性使分子振动从基态向高能级跃迁时产生的,记录的主要是含氢基团X-H(X=C、N、O)振动的倍频和合频吸收。

    不同基团(如甲基、亚甲基,苯环等)或同一基团在不同化学环境中的近红外吸收波长与强度都有明显差别;

    NIR光谱具有丰富的结构和组成信息,非常适适用于碳氢有机物质的组成与性质丈量。

    但在NIR区域,吸收强度弱,灵敏度相对较低,吸收带较宽且重叠严重。

    因此,依靠传统的建立工作曲线方法进行定量分析是十分困难的,化学计量学的发展为这一题目的解决奠定了数学基础。

    其工作原理是,假如样品的组成相同,则其光谱也相同,反之亦然。假如我们建立了光谱与待测参数之间的对应关系(称为分析模型);

    那么,只要测得样品的光谱,通过光谱和上述对应关系,就能很快得到所需要的质量参数数据。分析方法包括校正和猜测两个过程:

    (1)在校正过程中,收集一定量有代表性的样品(一般需要80个样品以上),在丈量其光谱图的同时;

    根据需要使用有关标准分析方法进行丈量,得到样品的各种质量参数,称之为参考数据。

    通过化学计量学对光谱进行处理,并将其与参考数据关联,这样在光谱图和其参考数据之间建立起逐一对应映射关系,通常称之为模型。

    固然建立模型所使用的样本数目很有限,但通过化学计量学处理得到的模型应具有较强的普适性。

    对于建立模型所使用的校正方法视样品光谱与待分析的性质关系不同而异,常用的有多元线性回回,主成分回回,偏最小二乘,人工神经网络和拓扑方法等。

    显然,模型所适用的范围越宽越好,但是模型的范围大小与建立模型所使用的校正方法有关,与待测的性质数占有关,还与丈量所要求达到的分析精度范围有关。

    实际应用中,建立模型都是通过化学计量学软件实现的,并且有严格的规范(如ASTM-6500标准)。

    (2)在猜测过程中,首先使用近红外光谱仪测定待测样品的光谱图,通过软件自动对模型库进行检索,选择正确模型计算待测质量参数。

标签: 近红外光谱
近红外光谱 近红外光谱的工作原理阐述_近红外光谱

上一篇:继电器的工作原理 继电器工作原...

下一篇:KO-7DJ土工膜(防渗膜)渗...

  • 手机多多
  • 官方微信订阅号
商品已成功加入购物车!