红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。在分子构型和构象研究、化学化工、物理、能源、材料、天文、气象、遥感、环境、地质、生物、医学、药物、农业、食品、法庭鉴定和工业过程控制等多方面的分析测定中都有十分广泛的应用。
红外光谱可以研究分子的结构和化学键,测温仪如力常数的测定和分子对称性等,利用红外光谱方法可测定分子的键长和键角,并由此推测分子的立体构型。根据所得的力常数可推知化学键的强弱,由简正频率计算热力学函数等。分子中的某些基团或化学键在不同化合物中所对应的谱带波数基本上是固定的或只在小波段范围内变化,因此许多有机官能团例如甲基、亚甲基、羰基,氰基,羟基,胺基等等在红外光谱中都有特征吸收,通过红外光谱测定,人们就可以判定未知样品中存在哪些有机官能团,这为最终确定未知物的化学结构奠定了基础。
由于分子内和分子间相互作用,有机官能团的特征频率会由于官能团所处的化学环境不同而发生微细变化,这为研究表征分子内、分子间相互作用创造了条件。
分子在低波数区的许多简正振动往往涉及分子中全部原子,不同的分子的振动方式彼此不同,lx-101白光照度计这使得红外光谱具有像指纹一样高度的特征性,称为指纹区。利用这一特点,人们采集了成千上万种已知化合物的红外光谱,并把它们存入计算机中,编成红外光谱标准谱图库。
人们只需把测得未知物的红外光谱与标准库中的光谱进行比对,就可以迅速判定未知化合物的成份。
当代红外光谱技术的发展已使红外光谱的意义远远超越了对样品进行简单的常规测试并从而推断化合物的组成的阶段。红外与其它多种测试手段联用衍生出许多新的分子光谱领域,例如,色谱技术与红外光谱仪联合为深化认识复杂的混合物体系中各种组份的化学结构创造了机会;把红外光谱仪与方法结合起来,形成红外成像技术,用于研究非均相体系的形态结构,红外测温仪原理和选型由于红外光谱能利用其特征谱带有效地区分不同化合物,这使得该方法具有其它方法难以匹敌的化学反差。
故障一:新仪器电脑出现死机,程序错误、黑屏、分析软件的START状态不对有时变为黄色不动,有时虽然动但是变为红色。 处理办法:此为通讯线接触不良,重新连接即可。 故障二:排气不畅故障,氩气排气管路堵塞,火花室下部的弯头内有异物,氩气过滤器入口端有异物。 处理办法:更换排气管,要更换透明的塑料管,并定期对排气管路进行吹扫。 故障三:温度偏高故障 处理办法:检查仪器后盖风扇是否转动,转动是否灵活。 故障四:真空泵不自动启动故障, 处理办法:先看泵油温度是否较低,重新断电后,手动启动真空泵,有时需停顿一下,再试。 故障五:P、S稳定性不好,检查真空泵是否被误关掉,真空光路镜片是否需要清洗,一个维护不好的光路会导致错误的重现性和分析结果。 处理办法:检查真空泵及清洗镜片 故障六:真空值下降快故障 处理办法:看真空值曲线是否平缓,否则,有漏气的地方,检查真空室真空盖密封性,更换密封圈或对角紧固螺丝, 故障七:光强值下降 原因分析: 1、透镜脏 2、入射狭缝污染 3、光纤老化 处理办法:擦拭透镜,清理狭缝,更换光纤。 经验总结:光谱仪用久了,激发台会因点打的太多了,出现放电漏气现象,导致光强上不去,需要经常清理激发台板及火花室。 故障八:数据不稳定 处理方法:清洗镜片后重新做标准化,仪器镜片的污染会导致数据测试的结果不稳定,长时间没有做仪器的曲线校准也会导致数据测试稳定性不好。
直读光谱仪是光和电结合的精密仪器,正确地使用和维护保养是机器正常运行,延长使用寿命,保持高性能和高指标的关键。一定要按照仪器说明书来全面理解,从原理到实际操作、测试等整个过程。既要反对神秘化,又要反对盲目乱动。要把劲用在认识仪器中的光学,机械、电子(包括计算机)等三个方面,使我们长知识,长才干,就能够受益较深,用理论指导实际操作。如果对仪器的性能没有消化就盲动,不但可能造成破坏性的损坏,即使一个另部件稍微动一点,有时查不出来,就会影响使用,影响分析时间,即使查出后也须要校验工作跟上去。
仪器维护要做到三防一恒。即防震,防尘,防潮,仪器要保持恒温。这个条件必须在设计试验室需要考虑的。
要使仪器的测试结果保持高的灵敏度(检出限低)和高精度。(因检出限是背景/噪声)的标准偏差或二倍标准偏差或三倍标准偏差来衡量(国家标准规定为三倍标准偏差)。可见噪声大检出限就低下。因此整个系统的信噪比要高,要稳定(指重现性要好),就需要从光源、分光器到测控系统做起。如果放置仪器的房间离震源较近或受到碰撞,整个系统的同轴性及其相对位置就要遭到破坏。严重时要测的信号测不到或测到信号很弱,杂散光却增加了。由于温度的变化使仪器的内部件、元件的温度系数产生变化。由于仪器另部件、元件的温度系数随温度变化的大小不同,导致各部件的相对位置产生变化。由于温度的变化引起仪器内部光学元件折射率;色散元件的折射率,光栅常数的变化,造成光栅色散率的变化。导致光谱线(入射狭逢的像),偏离出射狭缝的中心位置,影响光谱线的清晰度或强度。
从光源发出的光,经分光器到探测器窗口经过的光学有效空间,透射面,反射面都会受到灰尘,手印,潮气,油污,霉斑等的污染。使信号因吸收,反射,散射损失而减弱。有的变得使背景增大,增加了噪声水平。
电学元件(尤其是高压高频元件),也会因灰尘,潮湿,油污,温度过度,使介质损耗增大,绝缘降低,暗电流增大,重者击穿,损坏,漏电。轻者也会使仪器的稳定性变坏,增大热噪声电子,使信噪比降低。
一般常见的光学元件如水晶的,铅膜,银膜等反射镜,光栅反射面上经过一段时间以后,反射率和透过率都有一定的降低。长期放置在大气中会产生这种现象。严重的会产生霉斑。就是因为霉菌的生长发育温度在10℃-40℃之间,大于70%的湿度和尘埃(尘埃本身就是有机物和霉菌),仪器内部引入的有机垫片,涂料,有机油类,粘合剂等都是霉菌生长发育繁殖的营养。
霉菌对光学仪器的危害是非常严重的,它使光的透过率、反射率、光导、象质大大降低。所以光电直读光谱仪尽量选择内控温度的仪器;一般要求室内控制温度在23℃左右。仪器应放置在不受阳光直照的且具有防震,少尘,干燥,温度变化小,远离腐蚀性气氛的房间内。