1.可能原因
a 检查电源线、保险丝、功能选择开关和信号线有无断路或接触不良
b 检查涡轮流量计显示仪内部印刷版,接触件等有无接触不良
c 检查检测线圈
d 检查传感器内部故障,上述1-3项检查均确认正常或已排除故障,但仍存在故障现象,说明故障在传感器流通通道内部,可检查叶轮是否碰传感器内壁,有无异物卡住,轴和 轴承有无杂物卡住或断裂现象
2.解决方案
a 用欧姆表排查故障点
b 印刷板故障检查可采用替换“备用版”法,换下故障板再作细致检查
c 做好检测线圈在传感器表体上位置标记,旋下检测头,用铁片在检测头下快速移动,若计数器字数不增加,则应检查线圈有无断线和焊点脱焊
d 去除异物,并清洗或更换损坏零件,复原后气吹或手拨动叶轮,应无摩擦声,更换轴承等零件后应重新校验,求得新的仪表系数
1.可能原因
a 传输线屏蔽接地不良,外界干扰信号混入显示仪输入端
b 管道振动,叶轮随之抖动,产生误信号
c 截止阀关闭不严泄露所致,实际上仪表显示泄漏量
d 显示仪内部线路板之间或电子元件变质损坏,产生的干扰
2.解决方案
a 检查屏蔽层,显示仪端子是否良好接地
b 加固管线,或在传感器前后加装支架防止振动
c 检修或更换阀
d 采取“短路法”或逐项逐个检查,判断干扰源,查出故障点
1.可能原因
a 过滤器是否堵塞,若过滤器压差增大,说明杂物已堵塞
b 流量传感器管段上的阀门出现阀芯松动,阀门开度自动减少
c 传感器叶轮受杂物阻碍或轴承间隙进入异物,阻力增加而减速减慢
2.解决方案
a 消除过滤器
b 从阀门手轮是否调节有效判断,确认后再修理或更换
c 卸下传感器清除,必要时重新校验
孔板流量计是将标准孔板与多参数差压变送器(或差压变送器、温度变送器及压力变送器)配套组成的高量程比差压流量装置,可测量气体、蒸汽、液体及引的流量,广泛应用于石油、化工、冶金、电力、供热、供水等领域的过程控制和测量。节流装置又称为差压式流量计,是由一次检测件(节流件)和二次装置(差压变送器和流量显示仪)组成广泛应用于气体。蒸汽和液体的流量测量。具有结构简单,维修方便,性能稳定。
1、差压管路堵塞,疏通差压管路;
2、差压计故障,检查差压计;
3、差压变送器示值明显偏离,应检查尺示值;
4、节流元件安装方向有误,重新安装节流元件;
5、被测介质工况参数与设计节流装置时采用的参数不一致,按相关公式修正,必要时应重新计算差压值;
6、节流装置前后直管段长度不够,应调整直管段长度;
7、直管段内径超差,实测直管段内径,重新计算最大流量;
8、节流孔径超差,实测节流孔径,重新计算最大流量;
9、节流元件变形,更换节流元件;
10、节流元件上有附着物,清洗更换节流元件;
11、孔板的尖锐一侧应该迎向流体流向为入口端,呈喇叭形的一侧为出口端。如果装反了,显示将会偏小很多。
解决办法:检查孔板安装方向,正确安装孔板。
12、孔板的入口边缘磨损,如果孔板使用时间较长,特别是在被测介质夹杂固体颗粒等杂物情况下,都会造成孔板的几何形状和尺寸的变化,如果造成开孔变大或开孔边缘变钝,测量压差就会变小,流量显示就会偏低。
解决办法:对孔板进行重新加工。
13、变送器零点漂移:如果使用时间较长,变送器的零点可能会发生漂移,如果是负漂移,显示压差将会减小,显示的流量也会减小。
解决办法:对变送器的零点进行校正。
14、上下游直管段长度不够,上下游直管段如果不够长,气体将得不到充分发展,会使计量结果造成较大误差,如果上游在规定直管段内存在多个弯头,将使计量结果偏低。
解决办法:改造蒸汽管道,是上下游直管段长度达到规定要求。在节流装置前加整流器。
15、差压变送器的三阀组漏气,如果三阀组中的高压阀货平衡阀漏气,将会导致测量差压值减小,测量结果就会偏低。
解决办法:如果三阀组中的高压阀门漏气,将该阀门进行紧固,必要时进行更换,如果三阀组中的平衡阀内漏,将该阀门进行紧固,必要时进行更换。
电磁流量计传统的定期维护检查是将流量传感器卸下管线清扫和检查,然后实施流量校准。为减少流量传感器从管道上卸装损伤衬里,先在管线上测量绝缘电阻等推断有无异常现象,再决定下一步是否卸下管线检查或实流流量校准。一般有条件的(真正贯彻ISO9001质量管理体系)企业大致检查方式为:
(1)1/3只作在线检查;
(2)1/3卸下管线做接液部位清扫后检查;
(3)1/3离线作流量校准。
检查内容:
检查电磁流量计,除零点检查外,还将流量传感器、转换器和连接电缆分开进行。
1、整机零点检查
整机零点检查的技术要求是:流量传感器测量管充满液体且无流动,这在许多企业现场不具备条件而放弃整机的零点检查和调整,但可转而对转换器作单独的零点检查和调整。从技术上讲,这必须在传感器检查完毕后且保证传感器励磁回路和信号回路的绝缘电阻正常(均包含电缆)的前提下才有实际意义,否则整机就不能正常运行。通常转换器单独零点为负值,数值也很小;如果其绝对值大于满量程的5%就需要先做检查,待确认原因后再作调整。通常情况下电磁流量计整机的零点和转换器单独的零点差异值小于1%。大于5%的零点差异值有许多情况是用户在管道阀门关闭不良情况下进行不正确调零操作所致。
2、连接电缆检查
该项检查内容是检查信号线与励磁线各芯导通和绝缘电阻,检查各屏蔽层接地是否完好。3、转换器检查
该项检查内容是用通用仪表以及流量计型号相匹配的模拟信号器代替传感器提供流量信号进行调零和校准。校准包括零点检查和调整、设定值检查、励磁电流测量、电流/频率输出检查等。需要注意的是:检查项目要与上一次检查值(或出厂值)进行比较,分析其是否有变化或变化是否符合原计量要求。
4、流量传感器检查
该项检查内容是:通过对励磁线圈的检查和检查转换器所测得的励磁电流以间接评价磁场强度是否变化;测量电极接液电阻以评估电极表面受污秽和衬里附着层状况;检查各部位绝缘电阻以判断零件劣化程度以评估是否会引入干扰。对能停止介质流动条件的管线则可观察和测量电极和衬里附着层厚度,以估算清洗附着层前后因流动面积变化引入的流量值变化。
(1)测量励磁线圈铜电阻
用高精确度数字万用表或惠斯登电桥测量线圈电阻,必要时作温度系数修正后与仪表档案值比较。确认线圈是否导通良好和无匝间短路现象。
(2)检查励磁线圈绝缘电阻
励磁线圈及其接线端子受潮后励磁回路对地绝缘下降,很可能把励磁信号引入流量信号传输电路,使电极加上一个较大的绝缘电阻和信号电阻对励磁电压的分压,形成较大的共模干扰信号。当这一干扰信号超过转换器前置放大器的抑止能力,就会使转换器零点漂移。绝缘电阻下降不十分严重时,这一现象在仪表运行时还不易察觉。除IP68无接线端子盒外,实践中由于疏忽,接线端子盒未密封进入潮气,端子绝缘电阻下降到5~6MΩ以下时易造成故障。吹干端子,通常故障就可消除。
(3)检查电极接液电阻
流量传感器的电极接液电阻应在新装仪表调试好后立即测量,并记录在案。以后每维护一次测量一次,分析比较这些数据有助于判断仪表故障原因。
电极与液体接触电阻值取决于接触表面的被测液体电导率。不同介质所测电阻值有明显区别。电极接液电阻可用指针式万用表在测量管充满液体时分别测量每个电极端子与地间的电阻。经验表明分别测量两电极的接触电阻值之差应小于10%~20%,否则表明有故障。
测出的电极接液电阻与原测量值比较若有差异,原因为:a、两电极绝缘性附着层覆盖不一致或某一电极信号回路绝缘电阻下降;b、电阻值增加则是电极表面被绝缘层覆盖;c、电阻值减少则是电极附近衬里表面附着导电沉积层或电极装配(如绝缘套圈)绝缘下降。有时虽未形成故障,但应作为故障前兆而采取相应措施。
(4)测量电极/液体间极化电压
测量此电压将有助于判断电极是否被污秽或覆盖,由此可能形成零点不稳或输出晃动的故障。
(5)检查信号电路绝缘和励磁电路/信号电路之间绝缘
该项检查目的是评估是否因绝缘下降而引入干扰。检查信号电路时,信号线要临时与电极脱开。引起绝缘下降原因有接线盒未密封进入潮气、防护型传感器的电缆割断再接续时未做好防潮处理等。
(6)检查电极绝缘电阻和衬里状况
该项检查对小口径仪表要从管线卸下,对大口径仪表则可放空积液后从入孔进入管道观察:擦干衬里内表面用兆欧表分别测试两电极对地绝缘电阻;若衬里有附着层则须清除并按积层厚度确定清洗周期;若附着层不厚且电导率与液体相同则可忽略不计面积变化附加误差;若附着层电导率小于液体将产生正向附加误差,反之则产生负向附加误差。电极绝缘电阻一般要求大于100MΩ,绝缘下降多因电极、衬套等受外界浸水受潮所致(用热吹风排除潮气即可);若绝缘破坏(如腐蚀液从密封处侵入)则须调换传感器或返回厂家修理。