全自动工业分析仪主要用于测定煤等有机物中的水分、灰分和挥发分的含量,其主要特点是整个测试过程由计算机控制自动完成,分析时间短,测试精度高。
并且该仪器通过采用先进采集和传输数据控制系统,高可靠性真彩智能7寸液晶显示终端,微型热敏打印机,全中文触摸操作菜单,界面美观清晰,操作简便直观,使得该仪器具有很高的可靠性。该仪器自投放市场后深受广大用户和专家的好评。
为了使相关工作人员尽快掌握该仪器的使用和维护,建议认真阅读该仪器的使用说明书,以便对该机器做全面了解。
技术参数
1.电源要求
分析仪:(220±22)V、(50±1)Hz、20A(最大)、4.5KW(最大)
计算机:(220±22)V、(50±1)Hz、400W(标准值)
显示器:(220±22)V、(50±1)Hz、200W(最大)
2.气体要求
氧气:纯度99.5%、减压后压力0.20Mpa
氮气;纯度99.5%、减压后压力0.20Mpa
减压器:高端0-25Mpa;低端0-0.4Mpa
3.环境要求
温度:10-35℃;相对湿度:35-85%;大气压:86-106kPa
周围无强烈振动、灰尘、强电磁干扰、腐蚀性气体
4.坩埚数量
20个,一次可同时测试19个试样
5.试样质量
煤样(0.9-1.1)g
6.炉温范围:(10-1000)℃
7.分析精度
满足GB/T212-2001《煤的工业分析》标准要求
8.外形尺寸
605(长)×605(宽)×630(高) (mm)
9.重量:约50kg
用户自备物品
氧气钢瓶壹个
氮气钢瓶壹个
脱脂棉(医用)
标样
测试仪主机原理及各部件功能
1)高温炉:采用新型陶瓷纤维材料制成的红外炉,升温速度快,最高使用温度可达1000℃。
2)电子天平:通过延伸到高温炉内的称杆来精确称量坩埚的质量。
3)升降装置:通过步进电机的旋转带动丝杆,使与转盘相连的部件产生垂直方向的往复运动。
4)热电偶:用于精确测量高温炉内的温度。
计算机系统
1)用于运行测试程序,提供人机界面
2)对采集的数据进行处理
3)计算各种含量
4)测试结果的查询、打印和保存
5)控制整个系统的正常运转
打印机
用于输出测试结果报告。
测定流程
运行仪器的测试程序,进入工作测试菜单,输入相关的试样信息后仪器自动称量空坩埚,空坩埚称量完毕,系统自动打开上盖,提示放入试样,然后系统称量试样质量并开始加热。
升温到145℃左右恒温20分钟(指按国标方法,温度与恒温时间可自定义设置)后开始称量坩埚,当坩埚质量变化不超过系统设定值(默认0.0007克)时水分分析结束,系统报出水分测定结果,此时系统会自动打开上盖,提示加坩埚盖,仪器自动称量加坩埚盖质量,然后系统控制高温炉继续升温,目标温度900℃(系统自动打开氮气阀,向高温炉内通氮气,气体流量控制在4~5L/min),高温炉温度升到900℃,恒温规定的时间后,系统会自动打开上盖开始降温,当高温炉温度降到设定值时,仪器自动称量各坩埚质量,系统报出挥发分测定结果。
此时系统再次升温至850℃恒温(系统会打开氧气阀,向高温炉内通氧气,气体流量控制在4~5L/min),之后系统开始称量坩埚,当坩埚质量变化不超过系统设定值(默认0.0007克)时灰分分析结束,系统报出灰分测定结果,并打印结果或报表(如果在系统设置中设置了打印)。
测试准备
1准备坩埚
坩埚(包括坩埚盖)必须洁净、干燥,建议坩埚放在850℃马弗炉中充分灼烧,冷却后清理干净,然后放入干燥器中备用。
2准备气体
按第一章1.2节的要求准备一瓶氧气,一瓶氮气,将气管连接到分析仪背面的气体接头上(注意按仪器上标识接,氧气、氮气不能接反),调节减压器使减压器的低压表的显示压力为0.2Mpa。
分析仪前面板上有流量计指示气体的流量,仪器测试工作时气体流量是4-5升/分,在分析仪内部有一气体流量调节器,可调节气体流量(仪器出厂时已调节好),如果需要调节流量大小则可进入“检测”菜单,分别打开氧气阀、氮气阀,看着分析仪前面板上的流量计,调节分析仪内部的气体流量调节器就可调节气体流量大小。
3试样勺
本仪器中配有专用的试样勺。试样勺使用时应是干燥的,每次使用前必须清洁干净。
4开启电源
先接好打印机、计算机、分析仪的电源,然后按顺序开启打印机、计算机、分析仪的电源开关,分析仪必须预热30分钟以上。
测试试样
启动计算机后,运行测试程序(参阅第四章),进入“设置”菜单,设置好各栏目(参阅第四章),然后进入“检测”菜单,试运行分析仪的各部件是否正常(参阅第四章,建议点击“移到0号位”按钮,看转盘是否转到0号位置(分析仪转盘上标有红点的坩埚孔应正好停在称量杆的正上方),如正常则可进入“设置”分页,选择测试方法,其它均可按系统提示进行操作。
选择了测试方法后,在系统的表格上确定放试样的位置,此位置应与分析仪内的转盘上的坩埚位置一一对应。如果测试的试样不足19个,请从1号位置开始按顺序将试样坩埚放置到转盘上。称量坩埚或试样时分析仪会自动盖上炉盖。空坩埚称量完毕(系统自动记录空坩埚质量)就可加入试样,试样称量完毕后,高温炉开始升温进行测试,其它操作过程请参阅第四章软件操作。
气体吸附法测定比表面积原理,是依据气体在固体表面的吸附特性,在一定的压力下,被测样品颗粒(吸附剂)表面在超低温下对气体分子(吸附质)具有可逆物理吸附作用,并对应一定压力存在确定的平衡吸附量。通过测定出该平衡吸附量,利用理论模型来等效求出被测样品的比表面积、孔容积及孔径分布。
高纯氮气以及液氮(冷却剂)因其易获得性和良好的可逆吸附特性,成为常用的吸附质,广泛用于比表面积的测定。对于孔道较小,扩散较慢的微孔样品,如:分子筛及活性炭等样品;以及比表面积较小的样品,如:天然矿石,有机材料等,氮气做吸附气体存在局限性,可以选择氩气,二氧化碳气,氪气等做吸附气体。
氩气作为吸附气体可以在87K液氩温度或者77K的液氮温度下在材料表面发生稳定吸附,在分子筛样品微孔测试方面广泛应用。主要存在以下三方面原因:
1. 氮分子是极性分子且存在四极偶距,加强了吸附质分子与不均匀的分子筛孔壁之间的作用力,容易发生特性吸附,给识别不同孔径分子筛带来难度;相对氮分子,氩气分子是球形的非极性的单原子分子,能得到更精确的微孔分布。
2. 对于一个确定的孔宽,氮气比氩气需要更低的P/P0。故选用氩气做吸附气体,微孔吸附能在较高的P/P0点进行,有利于提高测试精度。
3. 氩气可以选在87K的液氩温度吸附,提高冷浴的温度,有利于缩短平衡时间,提高测试效率。
氩气做吸附气体测试其局限性在于孔径大于12nm后毛细凝聚就会消失,所以,一般只能用于微孔测试。
对于微孔较多的活性炭样品,可以选择用二氧化碳做吸附质,在冰点吸附,主要用于活性炭饱和吸附能力的测试。二氧化碳的冰点(273K)吸附相对氩气、氮气的吸附温度(77K或者87K)提高了很多,大大提高了气体扩散速度。故对活性炭样品,选择二氧化碳在冰点吸附,具有效率高,易扩散,容易得到饱和吸附量的特点,更适合于活性炭饱和吸附能力的测试。但是,二氧化碳冰点的饱和蒸汽压(3485.3KPa)太高,只能在微孔范围内吸附,不能达到更高P/P0压力点,除非选用高压吸附仪。
对于比表面积较小的金属粉末,有机材料以及一些天然的矿石可以选用氪气做吸附气体。