1、在跳相法中,电动机的进线和出线不是顺序排列,而是隔开一相接一相。在绕组连接时,必须注意B相的旋转方向一直和A、C两相方向相反,而倒相法则必须掌握第yi组出线的连接方向,否则会造成两个极相组短路。不管是跳相法或倒相法,都要求操作者能绘制和弄懂极相组连接图,这对于一般电机修理的人员来讲不易掌握,因而接线速度慢,容易出错。
2、改进方法
当电动机按照技术要求下完线圈后,每个极相组的首端和尾端,分别在绕组的外侧和内侧组成两个圆周形的线头组,以备接线。现以Y90L-4电动机为例,来说明分相法快速接线的步骤,见图1:
图中Q1=24 2P=4 q=2 y=1~6

图1 Y90L-4分相法接线图
从机座出线口右边第yi根首端开始 (图中槽1),按照a、b、c,a、b、c……的顺序,从左至右,在外圆上,将各极相组的首端分相。
将外圆上第yi个a、b、c组与后一个a、b、c组作为电动机的进线A、B、C和出线X、Y、Z。
将第二个a、b、c组与第三个a、b、c组的各相对应连接(即所谓头接头),即7-13,9-15,11-17槽相连。
用万用表电阻档找出进线A的尾端X(即6槽,在内侧圆周上)。
从尾端X开始,按照x、y、z,x、y、z……的顺序,从左至右,将内圆上极相组尾端分相。
将第yi个x、y、z组与第二个x、y、z组各相对应连接(即所谓尾接尾),图中6-12,8-14,10-16槽相连,第三个x、y、z组与第四个x、y、z组各相对应连接,图中18-24,20-2,22-4槽相连。
将进线B(3槽)与出线Y(21槽)对调,则进线为A、Y、C,出线为X、B、Z。
将A、Y、C与X、B、Z接至电机接线板上相应位置。
3、分相法接线的原理
由电机设计,我们知道:在三相交流异步电动机中,每个磁极下都分布着a、b、c三个极相组,共有三个首端和三个尾端。分相法接线的原理,就是根据极相组的首端(绕组外侧)和尾端(绕组内侧)重新把三个极相组分出来,然后按照极相组数等于磁极数则采用头接头、尾接尾的原则,进行极间连线。
同时,由于极相组在磁极下的排列,相与相之间相差60电角度,根据旋转磁场的原理,各极相组之间必须相差120电角度的原则,故将B相首尾调换,使得A、B、C之间互差120电角度,以满足建立旋转磁场的需要。
4、分相法接线的可行性
画出分相法接线的展开图,如图2

图2 Y90L-4分相法展开图
从展开图可以看出,各槽导体的电流方向符合三相异步电动机的三条规则:
1.相序号相同的槽导体电流方向必须相同;
2.相临的不同相序号的槽导体电流方向必须相反;
3.同一槽中的同相导体的电流方向必须相同,同一槽中不同相的导体的电流必须相反。 因Y90L-4为单层交流绕组,故只需遵守1、2两条规则而对于双层交流绕组的连接要同时遵守1,2,3条,所以上述连接方法是正确的。
5、分相法接线的优点
本接线法适用于极相组数等于磁极数的各种三相异步电动机,简单易懂,稍有电机理论的人都能掌握,大大提高了接线速度,不易出错,一般操作人员可提高接线速度30~50%,同时,由于进线和出线距机座出线口近,可节约绝缘管和电机引出线1/3以上,每台电机可节约工时1~1.5小时,节约成本5~20元,从而提高了经济效益。
如有需要了解更多产品,请联系销售人员或加微信号,请点击进入:三相异步电动机
我们根据三相异步电动机的工作原理看出,如果想要改变电动机转速,可以通过改变电动机绕组的极对数,所接电源的频率,转差率调速三种,调速方法也可以分为三种,具体的请看以下说明: 1.降低定子绕组电压调速 三相异步电动机改变定子绕组电压时的人为机械特性的特点是,同步转速ns不变,电动机的临界转差率sm亦不变。由于电动机的电磁转矩Te与定子绕组电压U1的平方成正比。所以随着定子电压U1的下降,电动机的电磁转矩Te与定子绕组电压U1的平方成正比地下降。故改变定子电压U1时的机械特性(如图所示)。
异步电动机改变定子电压时的机械特性 (a)单纯改变定子电压时的机械特性;(b)加大转子电阻时改变定子的机械特性
就要求增大电动机转子绕组的电阻,使电动机的机械特性变软,如图(b)所示。因此,应选用高转差率三相异步电动机等转子电阻较大的电动机,该类电动机具有图(b)所示的机械特性,从图中可以看出,当定子绕组电压降低时,转速由nA,nB,到nC,调速范围可以较宽一些,但因电动机的机械特性太软,低速时电动机运行的稳定性太差,即负载转矩稍有波动,就会引起转速有较大的变化,甚至无法工作。为了保证电动机低速运行时具有一定的机械特性硬度,一般在调压调速系统中采用转速负反馈构成闭环控制系统。 2.变极调速 由公式可知,在电源频率f1不变的条件下,三相异步电动机的同步转速ns与极对数P成反比,改变极对数就可以改变电动机的同步转速,从而改变电动机转子的转速改变极对数调速的三相异步电动机,一般都是笼型转子。因为极对数的改变必须在定子和转子上同时进行。而笼型转子电动机中,其转子本身没有固定的极数,即笼型转子的极数是随定子极数的改变而自动改变的,所以改变极对数比较方便,变极时只考虑定子方面即可。这种通过改变定子绕组的极对数P,而得到多种转速的电动机称为变极多速电动机。 3.变频调速 当三相异步电动机的极对数p不变时,其同步转速ns与电源频率,成正比,因此,若连续改变三相异步电动机电源的频率f1,就可以连续改变电动机的同步转速ns,从而可以平滑地改变电动机的转速n,达到调速的目的。
不论哪种形式的,在运行中均产生不同程度的谐波电压和谐波电流,使三相在非正弦电压、电流下运行。其中,高次谐波对普通异步电动机的运行效率和温升影响最大。高次谐波会引起三相异步电动机定子铜耗、转子铜(铝)耗、铁耗及附加损耗的增加,较为显着的是转子铜(铝)耗。因为三相异步电动机是以接近于基波频率所对应的同步转速旋转的,因此,高次谐波电压以较大的转差切割转子导条后,便会产生很大的转子损耗。除此之外,还需考虑因集肤效应所产生的附加铜耗。这些损耗都会使普通异步电动机额外发热,效率降低,输出功率减小,如将三相异步电动机运行于变频器输出的非正弦条件下,其温升一般要增加10%~20%。
2、三相异步电动机绝缘强度问题
目前中小型变频器,多数是采用PWM(脉宽调制)的控制方式。它的载波频率约为几千到十几千赫兹,这就使得三相异步电动机定子绕组要承受很高的电压上升率,相当于对三相异步电动机施加陡度很大的冲击电压,使三相异步电动机的匝间绝缘承受较为严酷的考验。另外,由PWM变频器产生的矩形斩波冲击电压叠加在三相异步电动机运行电压上,会对三相异步电动机的对地绝缘构成威胁,对地绝缘在高压的反复冲击下会加速老化。
3、谐波电磁噪声与振动
三相异步电动机采用变频器供电时,会使由电磁、机械、通风等因素所引起的振动和噪声变的更加复杂。变频电源中含有的各次时间谐波与三相异步电动机电磁部分的固有空间谐波相互干涉,形成各种电磁激振力。当电磁力波的频率和普通异步电动机机体的固有振动频率一致或接近时,将产生共振现象,从而加大噪声。由于三相异步电动机工作频率范围宽,转速变化范围大,各种电磁力波的频率很难避开三相异步电动机的各构件的固有振动频率。
4、三相异步电动机对频繁启动、制动的适应能力
由于采用变频器供电后,三相异步电动机可以在很低的频率和电压下以无冲击电流的方式启动,并可利用变频器所供的各种制动方式进行快速制动,为实现频繁启动和制动创造了条件,因而三相异步电动机的机械系统和电磁系统处于循环交变力的作用下,给机械结构和绝缘结构带来疲劳和加速老化问题。
5、低转速时三相异步电动机的冷却问题
首先,三相异步电动机的阻抗不尽理想,当电源频率较低时,电源中高次谐波所引起的损耗较大。其次,普通异步电动机在转速降低时,冷却风量与转速的三次方式比例减小,致使三相异步电动机的低速冷却状况变坏,温升急剧增加,难以实现恒转矩输出。