荧光分光光度计与紫外分光光度计属一类产品,结构均由激发光源、单色器、样品室、光电倍 增管和读出(记录)装置所组成。
但是它们光源是不同的,荧光分光光度计多采用高压汞灯、氙灯和?激光光源。
同时,荧光测量多采用激发光和发射光成直角的光路,仪器组件的布置有所不同。
(1)激发光源:要比吸收法中光源强度大。
汞灯:发射强度大、稳定,不需复杂电源,但谱线不连续,数目少,主要用于滤片荧光计。
碘钨灯:提供连续光谱300~700mn。
氙灯:发出射线的强度大,谱线连续,分布于200~700 nm光域内;
且在300~400nm 波段内射线强度几乎相等,但该灯的电源功率要求大,且电源稳定,因此电源结构复杂。
激光:发光强度大,能极大地提高荧光分析的灵敏度。
(2)样品池:
通常由石英池(液体样品用)或固体样品架(粉末或片状样品)组成。
测量液体时,光源与检测器成直角安排;
测量固体时,光源与检测器成锐角安排。
低温荧光测定时在一样品池外套一个液氮的透明石英真空瓶。
(3)单色器:
荧光分光计通常具有两个滤光片:第一滤光片在光源与样品池之间,滤去不需要的光,让需要的激发光通过。
第二滤光片在样品池与检测器之间,滤去溶剂散射 光、容器表面散射光、杂质发出的光等,让待测物质发射的荧光通过。
荧光分光光度计通常具有两个光栅,位置同滤光片,单色性好。
(4)检测器:
因荧光通常较弱,采用光电倍增管作检测器,灵敏度高。
选择光电倍增管要考虑:响应波长、灵敏度和嗓声水平。
蓝敏管对蛋白质、核酸的测量适用,而红敏管则适用于荧光染料检测。
(5)显示系统:光度表、计算机操作系统等。
微量分光光度计能够快速准确的定量检测核酸、蛋白质等溶液。具有使用方便、消耗样品少(仅2μl)、不用预热、能迅速清理残留样品、不需要比色皿或其它样品定位装置、样品不需要稀释等特点,常用于核酸,蛋白定量以及细菌生长浓度的定量,目前已成为众多实验室的常规仪器。
工作原理
超微量分光光度计进行浓度测定的原理是根据朗伯-比尔(Lamber-Beer)定律,A=K·C·L 式中,A为吸光度;K为吸(消)光系数;C为溶液的浓度;L为液层厚度。此公式说明:在入射光一定时,溶液的吸光度与溶液的浓度及液层厚度成正比。此式就是光的吸收定律的数学表达式,又叫朗伯-比尔定律。
核酸定量
核酸的定量是超微量分光光度计使用频率最大的功能。可以定量测定溶于缓冲液的寡核苷酸,单链、双链DNA以及RNA含量。这是由于核酸、核苷酸及其衍生物都具有共轭双键,具有紫外吸收的特性,最大的吸收波长在260nm,吸收波谷在230nm。
除了核酸浓度,分光光度计同时显示几个非常重要的比值表示样品的纯度,如A260/A280的比值,用于评估样品的纯度,因为蛋白的吸收峰是280nm。纯净的样品,比值大于1.8(DNA)或者2.0(RNA)。如果比值低于1.8 或者2.0,表示存在蛋白质或者酚类物质的影响。A230表示样品中存在一些污染物,如碳水化合物,多肽,苯酚等,较纯净的核酸A260/A230的比值大于2.0。
蛋白质直接定量
这种方法是在280nm波长,直接测试蛋白。蛋白质直接定量方法,适合测试较纯净、成分相对单一的蛋白质。紫外直接定量法相对于比色法来说,速度快,操作简单;但是容易受到平行物质的干扰,如DNA的干扰;另外敏感度低,要求蛋白的浓度较高。
比色法蛋白质定量
蛋白质通常是多种蛋白质的化合物,比色法测定的基础是蛋白质构成成分:氨基酸(如酪氨酸,丝氨酸)与外加的显色基团或者染料反应,产生有色物质。有色物质的浓度与蛋白质反应的氨基酸数目直接相关,从而反应蛋白质浓度。
比色方法一般有BCA,Bradford,Lowry 等几种方法。
与传统分光光度计相比,超微量分光光度计要求的样品体积小,不需要比色皿,比色杯清洗方便,只需用干净的吸水纸将样品从检测平台上擦拭干净即可。除此之外,实验过程也更为简单,不需预热,可随时检测,检测结果显示吸光度值的同时,程序直接给出浓度值。超微量分光光度计与传统相比,体积更小,更方便使用。
3.红外分光光度计基本原理及用途
红外分光光度计由光源发出的光,被分为能量均等对称的两束,一束为样品光通过样品,另一束为参考光作为基准。这两束光通过样品室进入光度计后,被扇形镜以一定的频率所调制,形成交变信号。
红外分光光度计基本原理:
分子的紫外可见吸收光谱是由于分子中的某些基团吸收了紫外可见辐射光后,发生了电子能级跃迁而产生的吸收光谱。它是带状光谱,反映了分子中某些基团的信息。可以用标准光图谱再结合其它手段进行定性分析。
根据Lambert-Beer定律:
A=εbc,(A为吸光度,ε为摩尔吸光系数,为液池厚度,c为溶液浓度)可以对溶液进行定量分析。
由光源发出的光,被分为能量均等对称的两束,一束为样品光通过样品,另一束为参考光作为基准。这两束光通过样品室进入光度计后,被扇形镜以一定的频率所调制,形成交变信号,然后两束光和为一束,并交替通过入射狭缝进入单色器中,经离轴抛物镜将光束平行地投射在光栅上,色散并通过出射狭缝之后,被滤光片滤除高级次光谱,再经椭球镜聚焦在探测器的接收面上。探测器将上述交变的信号转换为相应的电信号,经放大器进行电压放大后,转入A/D转换单位,计算机处理后得到从高波数到低波数的红外吸收光谱图。
特点和主要用途:
一般的红外光谱是指2.5-50微米(对应波数4000--200厘米-1)之间的中红外光谱,这是研究研究有机化合物常用的光谱区域。红外光谱法的特点是:快速、样品量少(几微克-几毫克),特征性强(各种物质有其特定的红外光谱图)、能分析各种状态(气、液、固)的试样以及不破坏样品。红外光谱仪是化学、物理、地质、生物、医学、纺织、环保及材料科学等的重要研究工具和测试手段,而远红光谱更是研究金属配位化合物的重要手段。
上一篇:【兆欧表】兆欧表三个常见问题
下一篇:恒温水浴的操作使用及注意事项