X
你好,欢迎来到仪多多。请登录 免费注册
仪器交易网
0我的购物车 >
购物车中还没有商品,赶紧选购吧!

【频谱仪】频谱仪四个常见问题

时间:2020-06-12    来源:仪多多仪器网    作者:仪多多商城     
1.频谱仪的测试准备
  在任何一个仪器仪表进行正常使用之前都要进行测试,当然频谱仪也不例外,经常和频谱仪打交道的朋友们知道如何进行测试的准备吗?下面仪器仪表世界网的专家来给大家说说怎么进行测试准备。
  
  1.限制性保护:规定zui高输入射频电平和造成*性损坏的zui高电压值:直流25V,交流峰峰值100V。
  
  2.预热:测试须等到OVERCOLD消失。
  
  3.自校:使用三个月,或重要测量前,要进行自校。
  
  4.系统测量配置:配置是测量之前把测量的一些参数输入进去,省去每次测量都进行一次参数输入。
  
  内容:测试项目、信号输入方式(频率还是频道)、显示单位、制式、噪声测量带宽和取样点、测CTB、CSO的频率点、测试行选通等。
  
  配置步骤:按MODE键——CABLETVANALYZER软键——Setup软键,进入设置状态。
  
  细节为tuneconfig调谐配置:包括频率、频道、制式、电平单位。Analyzerinput输入配置:是否加前置放大器。Beatssetup拍频设置、测CTB、CSO的频点(频率偏移CTBFRQoffset、CSOFRQoffset)。GATINGYESNO是否选通测试行。C/Nsetup载噪比设置:频点(频率偏移C/NFRQoffset)、带宽。

2.频谱仪使用小诀窍

频谱仪使用小诀窍

  频谱分析仪是一种应用广泛的信号分析仪器。它可用来测量信号的频率、电平、波形失真、噪声电平、频谱特性等,加上标准天线还可用来测量场强。它的主要特点是:能宽频带连续扫描,并将测得的信号在CRT屏上直观地显示出来。在整个频段内,电平显示范围大于70dB,在无线电电波测量中可以很方便地看出频谱占用和信号活动情况,所以在很多场合,频谱仪正在替代场强仪成为电波测量中一种新的被广泛应用的仪器。但必竟二者设计上有差异,因此使用侧重面应有所有同,否则将会带来很大的测量误差。

  现代频谱仪多采用微机处理,显示刻度可以自动转换。在实际测量中要特别注意天线阻抗与测试系统的匹配问题,避免产生失配误差。由于频谱仪在使用中是进行宽带扫描,所以所用天线要求也都是宽带天线,而宽带天线的VSWR一般都较大,如果与频谱仪联接的不是匹配天线,则要对所用天线的天线系数重新校对。

  在实际测量中,输入衰减器不宜放在0dB的位置,如果衰减器置0,输入信号直接接到混频器上,则阻抗特性变差,造成较大的失配误差。

  防止频谱分析仪过载

  一般测试接收机的输入端都有带有调谐式高放电路,以抑制带外信号,提高灵敏度。而频谱分析仪由于其宽带连续快速扫描的特性,输入端一般都直接接到第一混频器上。当信号电平较高时,混频器工作在非线性变频状态,将产生高阶互调和混频增益压缩,而且过高的电平(一般大于5dBm)将烧坏混频器,故在使用中要合理地选择射频衰减器以确保线性工作状态。

  为使混频器进行线性变频,中频放大器进行线性放大,使示波屏上出现的假响应电平缩至最小,这就要求加在混频器上的输入信号功率越小越好;而为了扩大测量电平的动态范围,则要求输入功率越大越好。为此对输入信号电平的选择有如下三个规定:

  (1)较佳输入信号电平

  在频谱仪输入混频器上输入信号时,使所产生的失真电平小于某个规定电平时的输入信号电平叫较佳输入电平。它随混频器的构造不同而有所不同,通常频谱仪的较佳输入电平是-30dBm。用这样的电平输入时,规定频谱仪产生的失真电平和假响应电平小于-90dBm,即在-30dBm到-90dBm间出现的信号是真正的信号,这时,显示器的动态范围有60dB。

  (2)线性输入信号电平

  使输入混频器的特性保持线性的最大输入信号电平叫线性输入电平。所谓“线性”,是指允许输入混频器有1dB的增益压缩。增益压缩1dB,约产生12.2%的误差。当加到混频器的信号电平在线性输入电平范围内时,则增益压压缩小于1dB,这并不意味着在频谱仪显示器上不同生失真响应和假响应。只有当输入到混频器的信号功率等于较佳输入电平时,在示波屏上才不出现假响应。通常,频谱仪的线性输入电平是-5dBm到-10dBm,视输入混频器的特性而定。

  (3)最大输入电平

  频谱仪输入回的烧毁电平叫频谱仪的最大输入电平。它由输入衰减器和混频器的特性决定。输入混频器的烧毁电平的典型值是+10dBm,输入衰减器的烧毁电平是+30dBm。

  在实际测量中,为使测量不失真,或使假响应电平减至最小,应经常使用较佳输入电平。就输入端是单个大信号而言。采用较佳输入电平,将会得到较满意的测量结果。但当输入端存在多个高电平信号时,即使这些信号可能在频谱仪的工作频带外,终因输入端没有选择性,这些信号功率的迭加很容易使混频器过载产生高阶交互调失真,从而产生假响应,因此有必要对所测信号以外的信号功率加以衰减,可以的办法是加一个跟踪滤波器,即预选器,如美国HP公司和西德R/S公司都有为其频谱仪配套的预选器。

  有些频谱分析仪没有配套的预选器,但可根据测量频段加固定的带通滤波器。此时,用频谱分析仪和跟踪信号发生器对通带内波动、插入损耗仔细进行测量并一一记录下来,在测量场强时计入到天线校正系数去。如果连带通滤波器也没有,那么可按照所测频段配置合适的高通滤波器。实践证明,强电台及电磁干扰大多集中在中、短波及调频波段、VHF低端,在采用高通滤波器后,可把被测频段以下的信号衰减40dB以上,这样可大大减少互调、交调失真。

  检验混频器是否工作在较佳状态,可以采用射频衰减器增加10dB,显示减少10dB的方法验证。通常,-30~-35dBm为混频器的较佳工作状态,即频谱仪的较佳输入电平为-30~-35dBm。较佳输入电平的择定为以后进一步的精确测量打下了良好基础。

  选择合适的中频带宽

  频谱仪的中频带宽(又称分辨率带宽)很多,从1MHz到1kHz以下约有10档左右。但由于频谱仪的连续扫描特性,它的滤波器是高斯型的矩形系数较大,一般60dB:3dB带宽为10:1。而测试接收机的中频滤波器矩形系数较小,一般60dB:6dB带宽为2:1(一般测试接收机为双调谐回路,且B3=0.8B6)。频谱仪的噪声系数较大,典型值为19dB,因此在频带宽相同的情况下,频谱仪的噪声电平比测试接收机高。

  了解这些不同后,就可以根据实测情况及所测信号的特点,选择合适的中频带宽。如果要测量间隔25KHz的两相邻信号,若它们的电平相差不大,则用10KHz的中频带宽就可以区分两信号。如果电平相差较大,则必须用3kHz或1kHz的中频带宽才能区分两信号。在选择中频带宽时,还应注意扫描时间,太快会使滤波器来不及响应,导致测量不准。有些频谱仪有自动调节功能,特别是现代较先进的它可将扫描时间自动调节到与扫描频宽、中频带宽相适应。若是手动调节的,应注意一旦中频带宽改变,扫描时间也要相应地变化,以保证准确测量。

  如果要测量较弱信号,就要减小中频带宽,使频谱仪的噪声电平低于被测信号。频谱仪一般给出最小中频带宽以下的平均噪声电平,中档频谱仪的典型值为-115dBm。为保证测量结果有效,应使信噪比优于6dB,故它可测量的最小电平为-109dBm即-2dBμV。实际上可测的最小电平还受到频谱仪杂散响应指标的影响,而且当被测信号小于1μV时,通过机壳、电源线等引入干扰会使测量结果不可靠。

  怎样保证测量精度

  测试接收机都装有标准脉冲振荡器,以便在测量状态,如频率、衰减器、中频带宽改变时随时可进行校准。其测量精度主要由标准振荡器的准确度及输入失配误差来决定,一般为±2dB。

  频谱仪系采用固定频率的标准信号进行校准,当测量频率不同时就会产生误差。同时,射频衰减器参考电平、中频带宽、显示刻度等的改变都会产生误差。

频谱仪
频谱仪 频谱仪使用小诀窍_频谱仪
3.频谱仪使用方法

频谱仪使用方法

  第一步按Power On 键开机。  第二步,开机三十分钟后进行自动校准,先按Shift+7(cal),之后再按cal all,这个过程一般会持续三分钟左右。  第三步,校准好之后设置中心频率数值,按FREQ 键,按下FREQ 键之后我们会看到显示的数值以及单位。  第四步,按Span 键,之后输入扫描的频率宽度大概值,然后键入单位。  第五步,按Level 键,输入功率参考电平REF的数值,然后键入单位。  第六步,按REF offset on ,输入接头损耗、线损耗以及仪器之间的误差值。  第七步,按BW 键,分别设置分辨带宽RBW和视频宽度VBW。  第八步,按Sweep 键,再按SWP Time AUTO/MNL 输入扫描时间周期,键入单位。  第九步,按shift+Recall 键,将设置好的信息保存。  第十步,按recall 键,选择需调用信息的位置按ENTER ,将需要的设置信息调出来。  第十一步按PK SRCH 键,通过Mark 键可读出峰值数值,之后可以判断峰值是不是合格。

频谱仪
频谱仪 频谱仪使用方法_频谱仪
4.频谱仪的操作和使用要点

频谱仪的操作和使用要点

  1、怎样设置才能获得频谱仪较佳的灵敏度,以方便观测小信号?  首先根据被测小信号的大小设置相应的中心频率、扫宽(SPAN)以及参考电平;然后在频谱分析仪没有出现过载提示的情况下逐步降低衰减值;如果此时被测小信号的信噪比小于15db,就逐步减小RBW,RBW越小,频谱分析仪的底噪则越低,灵敏度就越高。  如果频谱分析仪有预放,打开预放。预放开,可以提高频谱分析仪的噪声系数,从而提高了灵敏度。对于信噪比不高的小信号,可以减少VBW或者采用轨迹平均,平滑噪声,减小波动。  需要注意的是,频谱仪测量结果是外部输入信号和频谱分析仪内部噪声之和,要使测量结果准确,通常要求信噪比大于20db。  2、分辨率带宽(RBW)越小越好吗?  RBW越小,频谱分析仪灵敏度就越好,但是,扫描速度会变慢。可以根据实际测试需求设RBW,在灵敏度和速度之间找到平衡点–既保证准确测量信号又可以得到快速的测量速度。  3、平均检波方式(Average Type)是如何选择、Power?Logpower?Voltage?  Logpower对数功率平均、它通常又称为Videoaveraging,这种平均方式具有最低的底噪,适合于低电平连续波信号测试。但对”类噪声“信号会有一定的误差,比如宽带调制信号W-CDMA等。  功率平均、又称RMS平均,这种平均方式适合于“类噪声“信号(如CDMA)总功率测量。  电压平均、这种平均方式适合于观测调幅信号或者脉冲调制信号的上升和下降时间测量。  4、扫描模式的选择、SWEEP还是FFT?  现代频谱仪的扫描模式通常都具有SWEEP模式和FFT模式。通常在比较窄的RBW设置时,FFT比SWEEP更具有速度优势,但在较宽RBW的条件下,SWEEP模式更快。  当扫宽小于FFT的分析带宽时,FFT模式可以测量瞬态信号;在扫宽超出频谱分析仪的FFT分析带宽时,如果采用FFT扫描模式,工作方式是对信号进行分段处理,段与段之间在时间上存在不连续性,则可能在信号采样间隙时,丢失有用信号,频谱分析就会存在失真。这种类型信号包括、脉冲信号,TDMA信号,FSK调制信号等。  5、检波器的选择对测量结果的影响?  PEAK检波方式、选取每个BUCKET中的最大值作为测量值。这种检波方式适合连续波信号及信号搜索测试。  SAMPLE检波方式、这种检波方式通常适用于噪声和“类噪声”信号的测试。对于NEGPEAK检波方式、它适合于小信号测试,例如EMC测试。而对于NORMAL检波方式、它更适合于同时观察信号和噪声。  6、跟踪源(tg)的作用是什么?  跟踪源是频谱分析仪上的常见选件之一。当跟踪源输出经被测件的输入端口,而此器件的输出则通常连接到频谱仪的输入端口时,这样频谱仪以及跟踪源形成了一个完整的自适应扫频测量系统。跟踪源输出的信号的频率能精确地跟踪频谱分析仪的调谐频率。频谱仪配搭跟踪源选件,可以用作简易的标量网络分析,观测被测件的激励响应特性曲线,例如、器件的频率响应、插入损耗等。

频谱仪
频谱仪 频谱仪的操作和使用要点_频谱仪


上一篇:【雾度计】雾度计四个常见问题

下一篇:恒温水浴的操作使用及注意事项

  • 手机多多
  • 官方微信订阅号
商品已成功加入购物车!