X
你好,欢迎来到仪多多。请登录 免费注册
仪器交易网
0我的购物车 >
购物车中还没有商品,赶紧选购吧!

数字式网络化传感器在挤出生产线中的应用 传感器是如何工作的

时间:2020-07-01    来源:仪多多仪器网    作者:仪多多商城     
【导读】   分布式控制网络已出现在挤出工厂,但是仅限于几家大型树脂生产商、纤维纺纱生产商、采用复杂生产线的加工商、昂贵产品制造商以及拥有大量研究和开发预算的供应商。   网络化传感器现在

  分布式控制网络已出现在挤出工厂,但是仅限于几家大型树脂生产商、纤维纺纱生产商、采用复杂生产线的加工商、昂贵产品制造商以及拥有大量研究和开发预算的供应商。

  网络化传感器现在被认为是新工厂的一部分,然而网络化或者分布式系统经常要求软件授权,以及传感器之间必须用昂贵的交互设备相连,同时也需要复杂的排除故障和系统维护的功能,而这对于传统的设备控制而言是不必要的,因为传统设备直接从I/O控制板输入和输出数据。

  “不仅仅是价格的原因”,压力传感器制造商Gefran ISI公司副总裁Mark Caldwell表示,“大多数加工商不会评估检测分布式系统。”在欧洲,Gefran公司的一些客户采用该公司的CANopen 网络化压力传感器。这些传感器能够在线远程监控并修正生产线上出现的问题。

  数字式网络化传感器如Dynisco的产品开始出现在挤出生产线上,它具有高速、高精度、安装简便的特点。但是目前,维护的复杂性以及故障排除的困难可能会限制其应用。

  Dynisco公司提供压力传感器和控制器,其产品简单的安装和布线方式、快速而精确的数据采集以及快速的响应时间使Dynisco成为网络控制行业的**企业。数字式网络化压力传感器通过一条简单的现场总线来回发送和接收数据,通过工业PC对网络上所有设备实施闭环实时控制,工业PC的操作界面也可以是双重功能的。

  据 Dynisco产品市场部副总裁Douglas Joy介绍,传统的PLC设备控制系统的数据用梯形图连续进行加工,因此会造成延迟。另外这种系统在安装时也显得相当麻烦,例如要安装900个双线压力发射器,就需要装配1800条电线终端。不过PLC仍然可用在网络系统中,但是只用在简单的控制上,如开关、阀门的控制。

  Dynisco的压力传感器适合于除西门子的Profibus PA协议以外的大多数商业化应用的现场总线协议,包括:Emerson Electric的基础现场总线、Bosch的CANopen、Allen-Bradley的DeviceNet以及Bosch的HART(可寻址远程传感器高速通道的开放通信协议)系统。

  应用现状

  在挤出和混配供应商的生产线中,目前仅有少数装有现场总线系统。Dynisco公司的一些压力传感器采用基础现场总线协议安装在几家树脂公司和一家聚乙烯醇缩丁醛(PVB)薄膜加工商的生产线上。这些加工商已通过DeviceNet协议安装了温度传感器,同时正在寻求网络化压力传感器的应用,以减少线缆、提高精度和诊断能力。采用基础现场总线协议的优点还有:即使中央PC机发生故障,网络控制环仍然可以使挤出机继续独立运行。

  另一种分布式控制挤出生产线的网络化压力传感器通过离散控制,符合Profibus协议。加工商采用Dynisco传感器和 Eurotherm控制器,用于多层共挤出光学薄膜数百层薄层的控制,其优点是从极度复杂的反馈中快速获取压力数据,从而更好地控制产品质量。

  加拿大MPI熔体压力传感器公司生产温度和压力传感器。该公司认为如果加工商安装了整个网络系统,那么他们应该采用Profibus PA系统,因为这一系统安装成本*低。MPI之所以采用这种网络系统,是因为Profibus 没有许可证费用,软件和交互界面比其他协议便宜。

  熔体压力传感器在测量压力时,一般是将压力信号以mv输出。mv传感器信号也可以经放大器与之匹配。放大器提供一个与之相似的信号或数字信号(如基础现场总线),同时可以显示和传输压力信号。

  Eurotherm销售副经理Al Betz表示,由于传感器信号通常不是以数字信号开始的,所以迟早要进行数据转换,这样才更精确。Eurotherm公司提供DeviceNet和 Profibus协议的网络温度控制器,许多注射成型或挤出成型加工商已经安装采用了这些协议。

  Dynisco认为他们的DeviceNet和基础现场总线网络更精确,因为这些协议从传感器得到的信号是真正数字化的。Dynisco的网络压力传感器和传输设备合并了电子信号调节装置。另外,基础现场总线协议装置能够编程与PC的控制压力数据进行通信,如果PC发生故障,阀门等设备直接接收这些数据。这使得这些智能化设备可以接管设备的控制。不过这些额外的功能也使这种传感器变得很昂贵。

  Eurotherm的Betz认为, 在未来,加工商在购买挤出生产线时可能会碰到网络化传感器。因为一些欧洲的OEM正在寻求网络控制以减小控制柜的体积、提高速度和数据采集的精度,特别是对于复杂的共挤出流延薄膜生产线。然而,网络控制增加了维护和备件的成本。而且来自于不同制造商的传感器可能完全不能互换,甚至名义上遵循同一网络协议的设计也可能如此。



    温度有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器。IC温度传感器又包括模拟输出和数字输出两种类型。

    1、热电偶的工作原理

    当有两种不同的导体和半导体A和B组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端)或冷端,则回路中就有电流产生,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向),称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决于电流相对于温度梯度的方向),称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0)是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。温差电势是指同一导体或半导体在温度不同的两端产生的电势,此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。无论接触电势或温差电势都是由于集中于接触处端点的数不同而产生的电势,热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b之间便有一电动势差△V,其极性和大小与回路中的热电势一致。并规定在冷端,当电流由A流向B时,称A为正极,B为负极。实验表明,当△V很小时,△V与△T成正比关系。定义△V对△T的微分热电势为热电势率,又称塞贝克系数。塞贝克系数的符号和大小取决于组成热电偶的两种导体的热电特性和结点的温度差。

    目前,国际委员会(IEC)推荐了8种类型的热电偶作为标准化热电偶,即为T型、E型、J型、K型、N型、B型、R型和S型。

    2、热电阻的工作原理

    导体的电阻值随温度变化而改变,通过测量其阻值推算出被测物体的温度,利用此原理构成的传感器就是电阻温度传感器,这种传感器主要用于-200—500℃温度范围内的温度测量。纯金属是热电阻的主要制造材料,热电阻的材料应具有以下特性:①电阻温度系数要大而且稳定,电阻值与温度之间应具有良好的线性关系。

    ②电阻率高,热容量小,反应速度快。

    ③材料的复现性和工艺性好,价格低。

    ④在测温范围内化学物理特性稳定。

    目前,在工业中应用广泛的铂和铜,并已制作成标准测温热电阻

    3、红外温度传感器

    在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断地向四周辐射电磁波,其中就包含了波段位于0、75~100μm的红外线,红外温度传感器就是利用这一原理制作而成的。

    SMTIR9901/02是荷兰SmartecCompany生产的一款现在市场上应用比较广的红外传感器,它是基于热电堆的硅基红外传感器。大量的热电偶堆集在底层的硅基上,底层上的高温接点和低温接点通过一层极薄的薄膜隔离它们的热量,高温接点上面的黑色吸收层将入射的放射线转化为热能,由热电效应可知,输出电压与放射线是成比例的,通常热电堆是使用BiSb和NiCr作为热电偶。此外,SMT9902sil内部嵌入以Ni1000温度传感器和一小视角的硅滤片,使得测量温度更加的准确。因为红外辐射特性与温度相关,可以使用不同的滤镜来测量不同的温度范围。成熟的半导体工艺是产品小型化,低成本化。为了满足某些应用,红外传感器开口视角可以设计成小至7°。

    4、模拟温度传感器

    常见的模拟温度传感器有LM3911、LM335、LM45、AD22103电压输出型、AD590电流输出型。

    AD590是美国模拟器件公司的电流输出型温度传感器,供电电压范围为3~30V,输出电流223μA(-50℃)~423μA(+150℃),灵敏度为1μA/℃。当在电路中串接采样电阻R时,R两端的电压可作为输出电压。注意R的阻值不能取得太大,以保证AD590两端电压不低于3V。AD590输出电流信号传输距离可达到1km以上。作为一种高阻电流源,最高可达20MΩ,所以它不必考虑选择开关或CMOS多路转换器所引入的附加电阻造成的误差。适用于多点温度测量和远距离温度测量的控制。

    5、逻辑输出型温度传感器

    设定一个温度范围,一旦温度超出所规定的范围,则发出报警信号,启动或关闭风扇、空调、加热器或其它控制设备,此时可选用逻辑输出式温度传感器。LM56、MAX6501-MAX6504、MAX6509/6510是其典型代表。

    LM56是NS公司生产的高精度低压温度开关,内置1、25V参考电压输出端。最大只能带50μA的负载。电压从2、7~10V,工作电流量大230μA,内置传感器的灵敏度为6、2mV/℃,传感器输出电压为6、2mV/℃×T+395mV。

    6、数字式温度传感器

    它采用硅工艺生产的数字式温度传感器,其采用PTAT结构,这种半导体结构具有精确的,与温度相关的良好输出特性。PTAT的输出通过占空比比较器调制成数字信号,占空比与温度的关系如下式:DC=0、32+0、0047*t,t为摄氏度。输出数字信号故与微处理器MCU兼容,通过处理器的高频采样可算出输出电压方波信号的占空比,即可得到温度。该款温度传感器因其特殊工艺,分辨率优于0、005K。测量温度范围-45到130℃,故广泛被用于高精度场合。





人类社会环境中,压力无处不在啊,所以压力传感器自然成为了工业实践中为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业。

 

压力传感器

 

压力传感器是将压力转换为电信号输出的传感器。

 

在讲述压力传感器的同时,我们必须导出压力变送器的概念。

 

通常传感器由两部分组成,即分别是敏感元件和转换元件。其中敏感元件是指传感器中能够直接感受或响应被测量的部分;转换元件是指传感器中将敏感元件感受或响应的被测量的应变转换成适于传输或测量的电信号部分。

由于传感器的输出信号一般很微弱,需要将其调制与放大。随着集成技术的发展,人们又将这部分电路及电源等电路也一起装在传感器内部。这样,传感器就可以输出便于处理,传输的可用信号了。而在以前技术相对落后时,所谓的传感器是指上文中的敏感元件,而变送器就是上文中的转换元件。

压力传感器一般是指将变化的压力信号转换成对应变化的电阻信号或电容信号的敏感元件,如:压阻元件,压容元件等。而压力变送器一般是指,压敏元件与调理电路共同组成的测量压力的整套电路单元,一般能直接输出与压力成线性关系的标准电压信号或电流信号,供仪表、PLC、采集卡等设备直接采集。

压力传感器的分类

压力传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器等。

目前应用较为广泛的压力传感器有:扩散硅压阻式压力传感器、陶瓷压阻压力传感器、溅射薄膜压力传感器、电容压力传感器、耐高温特性的蓝宝石压力传感器。但应用为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。

各种压力传感器的原理

压阻式压力传感器

这种传感器采用集成工艺将电阻条集成在单晶硅膜片上,制成硅压阻芯片,并将此芯片的周边固定封装于外壳之内,引出电极引线。 提到压阻式传感器,首先得讲到它的原理——压阻效应。

压阻效应是用来描述材料在受到机械式应力下所产生的电阻变化。不同于压电效应,压阻效应只产生阻抗变化,并不会产生电荷。

原理图如上,当压力变化时,电阻R1,R2,R3,R4发生变化,从而引发加载在电阻中间的电压发生变化,这种变化反映出压力值。

压阻式传感器又称为扩散硅压阻式压力传感器,被测介质的压力直接作用于传感器的膜片上(不锈钢或陶瓷),使膜片产生与介质压力成正比的微位移,使传感器的电阻值发生变化,和用电子线路检测这一变化,并转换输出一个对应于这一压力的标准测量信号。

陶瓷压力传感器

抗腐蚀的陶瓷压力传感器没有液体的传递,压力直接作用在陶瓷膜片的前表面,使膜片产生微小的形变,厚膜电阻印刷在陶瓷膜片的背面,连接成一个惠斯通电桥(闭桥),由于压敏电阻的压阻效应,使电桥产生一个与压力成正比的高度线性、与激励电压也成正比的电压信号,标准的信号根据压力量程的不同标定为2.0 / 3.0 / 3.3 mV/V等,可以和应变式传感器相兼容。通过激光标定,传感器具有很高的温度稳定性和时间稳定性,传感器自带温度补偿0 ~70℃,并可以和绝大多数介质直接接触。

陶瓷是一种公认的高弹性、抗腐蚀、抗磨损、抗冲击和振动的材料。陶瓷的热稳定特性及它的厚膜电阻可以使它的工作温度范围高达-40 ~135 ℃,而且具有测量的高精度、高稳定性。电气绝缘程度2kV,输出信号强,长期稳定性好。

压电式压力传感器

压电式压力传感器原理基于压电效应。压电效应是某些电介质在沿一定方向上受到外力的作用而变形时,其内部会产生极化现象,同时在它的两个相对表面上出现正负相反的电荷。当外力去掉后,它又会恢复到不带电的状态,这种现象称为正压电效应。当作用力的方向改变时,电荷的极性也随之改变。相反,当在电介质的极化方向上施加电场,这些电介质也会发生变形,电场去掉后,电介质的变形随之消失,这种现象称为逆压电效应。

压电式压力传感器的种类和型号繁多,按弹性敏感元件和受力机构的形式可分为膜片式和活塞式两类。膜片式主要由本体、膜片和压电元件组成。压电元件支撑于本体上,由膜片将被测压力传递给压电元件,再由压电元件输出与被测压力成一定关系的电信号。这种传感器的特点是体积小、动态特性好、耐高温等。现代测量技术对传感器的性能出越来越高的要求。

例如用压力传感器测量绘制内燃机示功图,在测量中不允许用水冷却,并要求传感器能耐高温和体积小。压电材料适合于研制这种压力传感器。石英是一种非常好的压电材料,压电效应就是在它上面发现。比较有效的办法是选择适合高温条件的石英晶体切割方法,例如XYδ(+20°~+30°)割型的石英晶体可耐350℃的高温。而LiNbO3单晶的居里点高达1210℃,是制造高温传感器的理想压电材料。

电阻应变式压力传感器

将电阻应变片粘贴在弹性元件特定表面上,当力、扭矩、速度、加速度及流量等物理量作用于弹性元件时,会导致元件应力和应变的变化,进而引起电阻应变片电阻的变化。电阻的变化经电路处理后的以电信号的方式输出,这就是电阻应变片传感器的工作原理。

电阻应变片应用多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是 A/D 转换和 CPU )显示或执行机构。

半导体应变片是利用半导体单晶硅的压阻效应制成的一种敏感元件。半导体应变片需要粘贴在试件上测量试件应变或粘贴在弹性敏感元件上间接地感受被测外力。利用不同构形的弹性敏感元件可测量各种物体的应力、应变、压力、扭矩、加速度等机械量。半导体应变片与电阻应变片相比,具有灵敏系数高(约高 50~100倍)、机械滞后小、体积小、耗电少等优点。

电感式压力传感器

电感式压力传感器是用电感线圈电感量变化来测量压力的仪表。

常见的有气隙式和差动变压器式两种结构形式。气隙式的工作原理是被测压力作用在膜片上使之产生位移,引起差动电感线圈的磁路磁阻发生变化,这时膜片距磁心的气隙一边增加,另一边减少,电感量则一边减少.另一边增加,由此构成电感差动变化,通过电感组成的电桥输出一个与被测压力相对应的交流电压。具有体积小、结构简单等优点,适宜在有振动或冲击的环境中使用。

差动变压器式的工作原理是被侧压力作用在弹簧管_L,使之产生与压力成正比的位移,同时带动连接在弹簧管末端的铁心移动,使差动变压器的两个对称的和反向串接的次级绕组失去平衡,输出一个与被测压力成正比的电压.也可以输出标准电流信号与电动单元组合仪表联用构成自动控制系统。

电容式压力传感器

电容式压力传感器是利用电容敏感元件将被测压力转换成与之成一定关系的电量输出的压力传感器。特点是,低的输入力和侏儒能量,高动态响应,小的自然效应,环境适应性好。

它一般采用圆形金属薄膜或镀金属薄膜作为电容器的一个电极,当薄膜感受压力而变形时,薄膜与固定电极之间形成的电容量发生变化,通过测量电路即可输出与电压成一定关系的电信号。电容式压力传感器属于极距变化型电容式传感器,可分为单电容式压力传感器和差动电容式压力传感器。

单电容式压力传感器

它由圆形薄膜与固定电极构成。薄膜在压力的作用下变形,从而改变电容器的容量,其灵敏度大致与薄膜的面积和压力成正比而与薄膜的张力和薄膜到固定电极的距离成反比。另一种型式的固定电极取凹形球面状,膜片为周边固定的张紧平面,膜片可用塑料镀金属层的方法制成。这种型式适于测量低压,并有较高过载能力。还可以采用带活塞动极膜片制成测量高压的单电容式压力传感器。这种型式可减小膜片的直接受压面积,以便采用较薄的膜片提高灵敏度。它还与各种补偿和保护部以及放大电路整体封装在一起,以便提高抗干扰能力。这种传感器适于测量动态高压和对飞行器进行遥测。单电容式压力传感器还有传声器式(即话筒式)和听诊器式等型式。

差动电容式压力传感器

它的受压膜片电极位于两个固定电极之间,构成两个电容器。在压力的作用下一个电容器的容量增大而另一个则相应减小,测量结果由差动式电路输出。它的固定电极是在凹曲的玻璃表面上镀金属层而制成。过载时膜片受到凹面的保护而不致破裂。差动电容式压力传感器比单电容式的灵敏度高、线性度好,但加工较困难(特别是难以保证对称性),而且不能实现对被测气体或液体的隔离,因此不宜于工作在有腐蚀性或杂质的流体中。

谐振式压力传感器

利用谐振元件把被测压力转换成频率信号的压力传感器。它是谐振式传感器的重要应用方面,主要有振弦式压力传感器、振筒式压力传感器、振膜式压力传感器和石英晶体谐振式压力传感器。

当被测参量发生变化时,振动元件的固有振动频率随之改变,通过相应的测量电路,就可得到与被测参量成一定关系的电信号。其优点是体积小、重量轻、结构紧凑、分辨率高、精度高以及便于数据传输、处理和存储等。

薄膜压力传感器

溅射薄膜压力传感器也是利用电阻应变效应工作的,与传统应变式压力传感器属于同一原理。两者的主要差别制作工艺上。溅射薄膜压力传感器延用了测量压力的金属弹性膜片原理,应用离子束溅射和刻蚀工艺,将应变电桥直接制作在金属测压膜上,由于没有活动部件,抗震动和抗冲击能力很强,可用于恶劣的环境。

蓝宝石压力传感器

采用硅-蓝宝石作为半导体敏感元件,具有的计量特性。

表压压力传感器和变送器由双膜片构成:钛合金测量膜片和钛合金接收膜片。印刷有异质外延性应变灵敏电桥电路的蓝宝石薄片,被焊接在钛合金测量膜片上。被测压力传送到接收膜片上(接收膜片与测量膜片之间用拉杆坚固的连接在一起)。在压力的作用下,钛合金接收膜片产生形变,该形变被硅-蓝宝石敏感元件感知后,其电桥输出会发生变化,变化的幅度与被测压力成正比。

传感器的电路能够保证应变电桥电路的供电,并将应变电桥的失衡信号转换为统一的电信号输出(0-5,4-20mA或0-5V)。在绝压压力传感器和变送器中,蓝宝石薄片,与陶瓷基极玻璃焊料连接在一起,起到了弹性元件的作用,将被测压力转换为应变片形变,从而达到压力测量的目的。

蓝宝石系由单晶体绝缘体元素组成,不会发生滞后、疲劳和蠕变现象;蓝宝石比硅要坚固,硬度更高,不怕形变;蓝宝石有着非常好的弹性和绝缘特性( 1000 OC 以内),因此,利用硅 - 蓝宝石制造的半导体敏感元件,对温度变化不敏感,即使在高温条件下,也有着很好的工作特性;蓝宝石的抗辐射特性极强;另外,硅 - 蓝宝石半导体敏感元件,无 p-n 漂移,因此,从根本上简化了制造工艺,提高了重复性,确保了高成品率。  

用硅 - 蓝宝石半导体敏感元件制造的压力传感器和变送器,可在恶劣的工作条件下正常工作,并且可靠性高、精度好、温度误差极小、性价比高。

压力传感器在工业应用中为广泛,它同时还面临着选型优化、安装检测、故障排除、零点漂移等使用的问题,我们将为大家一一道来。




上一篇:直流中压鼓风机的特点及应用 鼓...

下一篇:KO-7DJ土工膜(防渗膜)渗...

  • 手机多多
  • 官方微信订阅号
商品已成功加入购物车!