在那些部位容易发生制冷剂泄漏?
在制冷系统中,涉及到制冷剂泄漏的部位主要有压缩机部分连接管件的焊接部分(工艺管、高压管、低压管)、过滤器(有2个焊点)、毛细管等连接铜管的焊点。
其中,压缩机上的工艺管、高压管和低压管的作用如下:
1 工艺管:主要对压缩机进行制冷剂的输送。
2 高压管:压缩机的制冷剂输出管,气态的制冷剂在压缩机及节流阀的作用下成为高压的液体,进入蒸发器后减小压力,制冷剂就气化并吸收大量热量,从而达到制冷效果。
3 低压管:完成制冷后的制冷剂恢复低压状态通过低压管进入压缩机,开始新一轮的制冷循环。
一般在制冷系统的焊接主要采用铜焊和银焊,该焊接方式(特别是铜焊)较易产生表面搭接,但内部并没有熔合,导致接头不致密,引起泄漏。
有制冷剂泄漏检测仪为什么还要使用热像仪进行检测?
一般在生产线上使用制冷剂泄漏探测仪对制冷剂进行泄漏检测,但冷剂泄漏探测仪的灵敏度调节非常困难,灵敏度调高会导致误报警或指示错误;灵敏度调低则会错漏问题产品,故使用红外热像仪进行检测能很好地解决上述问题。
如何能做好制冷剂泄漏检测?
一般泄漏点会比较小,有时在管壁表现出的温度差也会较小,故建议:
1 在可能条件下尽量使用热灵敏度高的红外热像仪进行检测。
2 重点检测部位为焊接点,整根铜管发生泄漏的可能性很小。
3 要防止现场其他的热源在检测部位发生发射造成干扰,建议客户对现场加装遮挡。
选购热像仪比较重要的四个因素,小编给大家罗列了下面四个: 一、看探测器分辨率 在选购热像仪之前,你必须要知道的是,探测器分辨率的高低是选择热像仪的一个重要参数,它会直接影响最终的成像效果。如果分辨率越高,那么图像就越清晰,查看体验就越佳。以福禄克品牌为例,TiX1000热像仪探测器分辨率高达786432像素,还可以通过精密位移成像技术实现4倍像素提升,生成超高清图像。如果探测现场工况混乱,可见度低,这款热像仪产品是你的不二之选。而如果只是需要物美价廉的入门级热像仪,那么选择TiS系列就可以。 二、看对焦系统 福禄克热像仪拥有五种对焦方式 1、免调焦:无需调焦操作,方便快捷,适用于大量设备维护现场; 2、手动对焦:可近距离对焦,不受现场目标位置制约,适用于需要近距离拍摄或精密对焦的现场; 3、自动对焦:根据中心区域图像直接进行对焦,操作方便,适用于距离远导致激光点辨识度受影响的现场; 4、LaserSharp激光自动对焦:灵活性好,反应迅速,能够直观地指示目标位置,特别适用于需要进行多次、多方位的对焦操作; 5、MultiSharp对焦:在整个视场范围内均可精准的捕获目标温度,获得完美图像,实现不同景深的多个目标全部准确对焦。 三、看空间分辨率 空间分辨率也就是IFOV,是使用热像仪观测时,它对目标空间形状的分辨能力, 是热像仪处理空间细节的技术指标,通常以mRad为单位来表示。简单地说,IFOV数值越小,可测目标距离就越大。而单位距离相同时,IFOV数值越小,空间分辨率越高,则单个像素所能检测到的面积就会越小,测温越准确。如果IFOV数值过大,那么被测目标就会受到环境辐射的影响,测出来的温度就是被测目标及其周围温度的平均值,数值就不准确了。如果是用于电气接头检测,那IFOV值只要小于等于10mRad,福禄克入门级TiS系列可考虑入手。如果是用于大面积、小目标如大型工业设备的维护(石化企业的反应塔,蒸馏塔等),那么TiX系列是。 四、看测温范围 测温范围就是指被测目标温度的最低限与最高限的温度值范围。由于热像仪主要就是通过测量目标的温度来进行探测成像,而每种型号的热像仪都是特定的测温范围,所以购买的时候一定要选择在自己需要测量的温度内的红外热像仪。需要注意的是,并不是温度档跨度越大就是越好的,温度档跨度小的话,测出的温度数值相对会更精准。另外,使用普通热像仪测量500℃以上的物体时,需要配备相应的高温镜头。福禄克热像仪有多种型号,每种型号都有各自的测温范围,相信总有一款是你需要的。
红外热像仪是一种常用的检测仪器,在工业、电力、石化、科研、消防、智能建筑等多个行业中都有一定的应用。用户在使用红外热像仪的时候需不仅要了解它的使用方法,对于它的使用技巧也是需要有一定的了解的,这样在使用时可以更加便捷。而当所有的红外热像仪都便于操作的时候,拥有学习能力、善于接受新技术成为自己出类拔萃的绝招。
1、调整焦距
您可以在红外图像存储后对图像曲线进行调整,但是您无法在图像存储后改变焦距,也无法消除其他杂乱的热反射。保证第一时间操作正确性将避免现场的操作失误。仔细调整焦距!如果目标上方或周围背景的过热或过冷的反射影响到目标测量的精确性时,试着调整焦距或者测量方位,以减少或者消除反射影响。(FoRD的意思是:Focus焦距,Range范围,Distance距离、
2、选择正确的测温范围
您是否了解现场被测目标的测温范围?为了得到正确的温度读数,请务必设置正确的测温范围。当观察目标时,对仪器的温度跨度进行微调将得到较佳的图像质量。这也将同时会影响到温度曲线的质量和测温精度。
3、了解最大的测量距离
当您测量目标温度时,请务必了解能够得到精确测温读数的最大测量距离。对于非制冷微热量型焦平面探测器,要想准确地分辨目标,通过热像仪光学系统的目标图像必须占到9个像素,或者更多。如果仪器距离目标过远,目标将会很小,测温结果将无法正确反映目标物体的真实温度,因为红外热像仪此时测量的温度平均了目标物体以及周围环境的温度。为了得到精确的测量读数,请将目标物体尽量充满仪器的视场。显示足够的景物,才能够分辨出目标。与目标的距离不要小于热像仪光学系统的最小焦距,否则不能聚焦成清晰的图像。
4、确定目标尺寸
红外热像仪根据原理可分为单色测温仪和双色测温仪(辐射比色测温仪、。对于单色测温仪,在进行测温时,被测目标面积应充满热像仪视场。建议被测目标尺寸超过视场大小的50%为好。如果目标尺寸小于视场,背景辐射能量就会进入热像仪的视声符支干扰测温读数,造成误差。相反,如果目标大于热像仪的视场,热像仪就不会受到测量区域外面的背景影响。
5、确定光学分辨率
光学分辨率由D与S之比确定,是热像仪到目标之间的距离D与测量光斑直径S之比。如果测温仪由于环境条件限制必须安装在远离目标之处,而又要测量小的目标,就应选择高光学分辨率的热像仪。光学分辨率越高,即增大D:S比值,热像仪的成本也越高。确定波长范围:目标材料的发射率和表面特性决定热像仪的光谱响应或波长。对于高反射率合金材料,有低的或变化的发射率。在高温区,测量金属材料的较佳波长是近红外,可选用0.18-1.0μm波长。其他温区可选用1.6μm、2.2μm和3.9μm波长。由于有些材料在一定波长是透明的,红外能量会穿透这些材料,对这种材料应选择特殊的波长。如测量玻璃内部温度选用1.0μm、2.2μm和3.9μm(被测玻璃要很厚,否则会透过、波长;测量玻璃内部温度选用5.0μm波长;测低温区选用8-14μm波长为宜;再如测量聚乙烯塑料薄膜选用3.43μm波长,聚酯类选用4.3μm或7.9μm波长。厚度超过0.4mm选用8-14μm波长;又如测火焰中的CO2用窄带4.24-4.3μm波长,测火焰中的CO用窄带4.64μm波长,测量火焰中的NO2用4.47μm波长。
6、确定响应时间
响应时间表示红外热像仪对被测温度变化的反应速度,定义为到达最后读数的95%能量所需要时间,它与光电探测器、信号处理电路及显示系统的时间常数有关。现在的红外热像仪的反映速度都很快。这要比接触式测温方法快得多。如果目标的运动速度很快或测量快速加热的目标时,要选用快速响应红外热像仪,否则达不到足够的信号响应,会降低测量精度。然而,并不是所有应用都要求快速响应的红外热像仪。对于静止的或目标热过程存在热惯性时,红外热像仪的响应时间就可以放宽要求了。因此,红外热像仪响应时间的选择要和被测目标的情况相适应。
仪器网-专业分析仪器服务平台,实验室仪器设备交易网,仪器行业专业网络宣传媒体。
相关热词:
等离子清洗机,反应釜,旋转蒸发仪,高精度温湿度计,露点仪,高效液相色谱仪价格,霉菌试验箱,跌落试验台,离子色谱仪价格,噪声计,高压灭菌器,集菌仪,接地电阻测试仪型号,柱温箱,旋涡混合仪,电热套,场强仪万能材料试验机价格,洗瓶机,匀浆机,耐候试验箱,熔融指数仪,透射电子显微镜。