反应釜是化工行业的重要设备之一,是整个化工工艺流程的心脏。其旋转轴机械密封装置是反应釜乃至整个工艺流程发生故障最频繁的关键部位,目前应用广泛的整体式机械密封在维修的时候存在着拆装困难的问题。
了解一下微型加氢反应釜功能都有那些特点
1.搅拌方式--内部磁力搅拌,不存在轴封泄漏及其保养的问题,确保无泄露旋转部件,试验更加安全。
2.A型双线密封--专利技术,解决了传统反应釜密封泄漏问题,防止有毒气体外泄,造成伤害
3.声光报警--超温自动切断加热电源,给反应釜安全增加了一层保障
4.独特设计针型阀--质量可靠,解决了传统阀门的密封问题
5.安全防爆阀--安全前沿的哨兵,给试验安全环境又添了一道安全
6.定时反应--设定时间,无人职守,节约了试验人员的宝贵时间
7.内部控温--控温精确
8.大扭力电机--保证了搅拌的高速与稳定
9.不锈钢压力表--防震,耐腐蚀、经久耐用
10.K型热电偶--保证了测量的精确性
11.模块加热--升温速度快
12.自主研发控温系统--防止温度过冲,增加了试验的成功性
13.炭纤维保温材料--节能环保
14.釜体与控制系统分离--方便了拆卸,提高了工作效率
15.独特的散热设计--防止局部过热,增加了设备的使用寿命
16.精心选材--釜体锻件材料加工,杜绝了不安全因素的来源
17.专业加工工艺--苛刻的加工标准与严格的执行程序,铸就了安全的第一要素
18.精密的检测设备--杜绝不安全因素在萌芽状态中生长
仪器设备的检查与使用
(1)实验室里进行催化氢化反应,实施前必须仔细检查所用小型高压反应釜,不得使用有明显破损、有裂痕以及年久没有定期维护的高压反应釜;
(2)对所使用的氢气袋子必须用氮气检查是否漏气,不得使用漏气的氢气袋子;
(3)检查所用的反应釜不锈钢管道与阀门是否老化、不可用、以及接头处是否松动;
对于使用高压釜进行的催化氢化反应,初次使用高压釜前必须有专人进行培训。使用设备前必须按规定逐项检查,主要内容包括:
(1)场地是否整洁有序,避免摆放杂乱导致的安全隐患;
(2)氢气及氮气的压力表头使用前必须进行打压试验,确认正常后方可使用;
(3)氢气及氮气钢瓶压力;
(4)管路是否有裂纹,是否畅通;
(5)各阀门是否漏气,并对确认其开/关状态;
(6)加氢反应釜的热电耦温度计是否正常可用,线路是否完好不露电,插热电偶时注意插到底,使之真实反应体系温度等;
由于机械密封的优越性,在大部分场合填料密封已经被淘汰。机械密封属于接触式密封,其关键部件动、静环会由于长期摩擦磨损而导致密封失效。由于机械密封的零件都是环状的,维修时必须从轴头拆卸、安装,而绝大部分反应釜在机械密封件的上部都安装有轴承、减速机、电机等部件,拆卸十分麻烦,而且周期很长。因此简单拆卸、清洗等特点的实验室反应釜,就有必要研发成功。
仪器网-专业分析仪器服务平台,实验室仪器设备交易网,仪器行业专业网络宣传媒体。
相关热词:
等离子清洗机,反应釜,旋转蒸发仪,高精度温湿度计,露点仪,高效液相色谱仪价格,霉菌试验箱,跌落试验台,离子色谱仪价格,噪声计,高压灭菌器,集菌仪,接地电阻测试仪型号,柱温箱,旋涡混合仪,电热套,场强仪万能材料试验机价格,洗瓶机,匀浆机,耐候试验箱,熔融指数仪,透射电子显微镜。
高压反应釜体普遍采用钢制(或衬里)、铸铁或搪玻璃。
反应釜所用的材料、搅拌装置、加热方法、轴封结构、容积大小、温度、压力等各有异同、种类很多,高压反应釜的基本特性分述如下。
1.结构
反应釜结构基本相同,除有反应釜体外,还有传动装置、搅拌和加热(或冷却)装置等,可改善传热条件,使反应温度控制得比较均匀,并不强化传质过程。
2.操作压力
反应釜操作压力较高。
釜内的压力是化学反应产生或由温度升高而形成,压力波动较大,有时操作不稳定,突然的压力升高可能超过正常压力的几倍,因此,大部分反应釜属于受压容器。
3.操作温度
反应釜操作温度较高,通常化学反应需要在一定的温度条件下才能进行,所以反应釜既承受压力又承受温度。
高压反应釜常用于石油化工、橡胶、农药、染料、医药等行业,用以完成磺化、硝化、氢化、烃化、聚合、不锈钢反应釜缩合等工艺过程,以及有机染料和中间体的许多其它工艺过程的反应设备。
投料前应先检查反应釜是否有污染,将高压釜内壁、搅拌、冷却盘管、温度探头套管以及接合面等用乙醇进行清洗,再用蒸馏水冲洗,冲洗后要再用棉花或绸布蘸乙醇擦净,防止物料交叉污染。使用前必须检查各阀门是否畅通,特别是压力表及防爆膜的管口。对于进气导管,还需要特别注意有无堵塞现象,如有物料污染或堵塞,应将导管和进气支管从釜盖上拆卸,清洗干净后再安装上去。 密封性检查 清洗完毕,釜体干燥以后,应先进行密封性检查。将釜体放入加热炉中,凸出部分对准凹槽放入,轻轻旋动釜体,放稳以后,缓慢、平稳的将釜体与釜盖合上,应特别注意保护密封面,避免釜盖和釜体的密封环遭受碰撞而导致损坏。盖好以后,应检查反应釜上下接口处是否对齐,轻轻旋动釜盖,确认釜盖已经放平密封环接触良好,加入垫片后,开始上螺丝。 上螺丝注意事项 上螺丝时一定要对号入座,先用手拧紧后,再用扭力扳手成十字形对称地上,以避免受力不均。螺丝不要一次扭到位,分多次拧对角螺丝,逐步加力对称上紧。 气密性检查 检查气密性时,应先检查各阀门(固体加料口,釜盖排气阀,进气阀等)是否旋紧(吃住劲即可,不要过于用力),检查控制器的搅拌开关、调速加热开关调到零后,开启控制箱电源及其显示开关。 试压操作 连接氮气:将氮气钢瓶与高压釜进气口通过导管连接,拧紧相关螺丝。开启氮气瓶总阀及分压阀,先将分压阀的压力调节到实验所需的压力,再开启反应釜进气阀,使气体缓慢充入反应釜内,当反应釜显示的压力值与氮气瓶上设定压力相同且不再变化时,顺序关闭反应釜的进气阀和氮气瓶的出气阀,记录反应釜显示的压力值,半小时后观察其压力是否有变化。 检查漏气点:如压力观察到明显下降趋势,则应检查漏气点。使用肥皂水对高压釜各个可能的漏点进行排查。重点检查区域为:高压釜盖与进气管、出气管、压力表的接口处;进气口、出气口的针型阀接口处、釜体与釜盖的密封圈、温度计探头插口等。如发现漏气现象,应先将压力放空后,对相应漏点进行紧固处理,再加压试漏。经检查无泄漏问题后,将压力放空,将肥皂水用去离子水清洗干净。 关闭氮气:确保釜内压力全部放空,关闭氮气钢瓶总阀及分压阀,并将管道内余压放空后,用扭力扳手成十字形对称的松开主螺母,缓慢、平稳的将釜体与釜盖分离,应特别注意保护密封面,避免釜盖和釜体的密封环遭受碰撞而导致损坏。 投料操作 试压完毕,可以进行投料操作。往干净、干燥的高压釜内加入反应物料和溶剂,按上述操作,将釜体和釜盖密封好。 检查工作 检查各阀门(固体加料口,釜盖排气阀,进气阀等)是否旋紧(吃住劲即可,不要过于用力),检查控制器的搅拌开关、调速加热开关调到零、确保热电偶已经插入釜盖并能正常显示温度变化后,开启控制箱电源及其显示开关。将搅拌轴所连接冷却水打开后,再开启搅拌开关,通过调速器控制搅拌转速,开始搅拌。 调节氮气 将氮气钢瓶与高压釜进气口通过导管连接,拧紧相关螺丝。开启氮气瓶总阀及分压阀,先将分压阀的压力调节到约1MPa,再开启反应釜进气阀,使气体缓慢充入反应釜内,当反应釜显示的压力值与氮气瓶上设定压力相同且不再变化时,关闭反应釜的进气阀。搅拌约3-5min后,打开排气阀放空,放空完毕,关闭排气阀。重复充气和放气过程3-5次,确保釜内无余压后,关闭排气阀。 通入氢气 管道连接:关闭氮气钢瓶的总阀及分压阀,并将管道内余压放空后,断开高压釜和氮气钢瓶的连接,将高压釜与氢气钢瓶通过管道连接,拧紧相关螺丝。 氢气压力调节:开启氢气瓶总阀及分压阀,先将分压阀的压力调节到约0.5-1MPa,再开启反应釜进气阀,使气体缓慢充入反应釜内,当反应釜显示的压力值与氢气瓶上设定压力相同且不再变化时,关闭反应釜的进气阀。将排气阀出气口通过管路连接到室外,搅拌约3-5min后,打开排气阀放空,放空完毕,关闭排气阀。重复充气和放气过程3-5次后,调节氢气钢瓶分压阀,将压力调整到反应所需压力,再将气体缓慢充入反应釜内,至压力表显示压力与实验所需压力一致,关闭进气阀和氢气钢瓶总阀和分压阀。 加热前检查:再次用肥皂水检查进气口、排气阀是否漏气,确保无氢气泄漏后方可打开控制器加热开关,阶梯式调整设定反应温度,以防止加热温度过高,并调整电压为合理范围,保证加热速度不超过80oC/h,运行加热程序,开始反应。 参数变化控制:反应开始后要密切关注反应中各参数(压力、温度、转速)的变化,尤其是压力的变化,一旦发现异常,应马上关闭加热开关,并报告部门领导,如温度过高,可以通过冷却盘管接冷却水降温处理;如压力过高,可以进行降温或从排气阀放空,氢气放空时一定要通过管道排到室外! 反应中取样控制 反应过程中,如需取样,可以通过进气口放料出来进行分析,但必须保证反应体系为均相,不会有固体析出。如反应中用到钯碳或雷尼镍等非均相催化剂,取样前应先将搅拌停止,静置约10min后,方可取样。如需多次取样分析,管道中首先放出的部分为管道中的残留,不能体现釜内真实的反应情况,应先放出约20毫升后再取样分析。 反应后操作 反应完毕,关闭加热,设定温度至室温,自然降温或通过冷却盘管通冷却水降温。冷却至40oC以下时,打开反应釜排气阀,缓慢将压力完全释放后,用扭力扳手成十字形对称的松开主螺母,缓慢、平稳的将釜体与釜盖分离,应特别注意保护密封面,避免釜盖和釜体的密封环遭受碰撞而导致损坏。 反应釜清洗 将釜体取出,将物料倒出,并用溶剂将釜内物料全部洗出,再用乙醇、水依次洗涤釜体、釜盖和取样管道,用软布或纸将密封锥面擦拭干净。应在出料完毕马上进行清洗,避免因溶剂挥发而导致清洗困难。清洗完毕,将釜体和釜盖置于通风处晾干。