热像仪科技在军民两方面都有应用,最开始起源于军用,逐渐转为民用。在民用中一般叫热像仪,主要用于研发或工业检测与设备维护中,在防火、夜视以及安防中也有广泛应用。
热像仪的工作原理
红外热像仪是一门使用光电设备来检测和测量辐射并在辐射与表面温度之间建立相互联系的科学。
辐射是指辐射能(电磁波)在没有直接传导媒体的情况下移动时发生的热量移动。现代红外热像仪的工作原理是使用光电设备来检测和测量辐射,并在辐射与表面温度之间建立相互联系。
所有高于绝对零度(-273℃)的物体都会发出红外辐射。
红外热像仪利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。
通俗地讲红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像。
热图像的上面的不同颜色代表被测物体的不同温度。通过查看热图像,可以观察到被测目标的整体温度分布状况,研究目标的发热情况,从而进行下一步工作的判断。
人类一直都能够检测到红外辐射。人体皮肤内的神经末梢能够对低达±0.009°C (0.005°F) 的温差作出反应。虽然人体神经末梢极其敏感,但其构造不适用于无损热分析。
例如,尽管人类可以凭借动物的热感知能力在黑暗中发现温血猎物,但仍可能需要使用更佳的热检测工具。
由于人类在检测热能方面存在物理结构的限制,因此开发了对热能非常敏感的机械和电子设备。这些设备是在众多应用中检查热能的标准工具。
热像仪是利用红外探测器和光学成像物镜接收被测目标的红外辐射能量,并将能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。
通俗地讲热像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。
说起红外热像仪,人们的第一反应是在军事上的应用,尤其是在美国的战争大片中,红外线热像仪几乎成了必备的装备。
实际上,红外热像仪较早也是应用于军事领域,在技术逐渐成熟以后才应用于民用工业,并且迅速扩展。
红外线热像仪属于测温仪的一种,由于带了热成像的功能,不仅仅显示某个点的温度示数,而是整个面的温度分布,所以比一般的测温仪更加直观,可以说为技术人员提供了一双能够直接观测温度的眼睛。
目前,在电力系统、土木工程、汽车、化石、冶金等诸多领域都广泛存在红外热像仪的应用,其发展前景十分广阔。
红外热像仪原理的核心是波尔兹曼定律,这位在热学领域贡献颇多的科学家将普朗克的理论进行了延伸,他发现红外线总能量与绝对温度的四次方成正比。
这一关系建立后,通过光敏元件对不同波长红外线的反应值进行数字化处理,可以反演出温度值,就能够得到完整的热像图,图像中颜色的不同就代表了温度的不同。
红外热像仪经常用于工业设备的检测,比如锅炉、电机、变电站等等设备,如果有故障发生,其各部分的温度会出现异常,可以通过热像仪很明显地找到故障位置。
虽然热像仪可以通过遥感的方式很方便地对温度进行测量,但是毕竟属于间接测量方式,精度并没有一般温度仪那么高,当仪器量程比较大时,比如在冶金行业使用的红外热像仪,其量程达到几千度,其测温精度的差别会有±2℃。
但就使用的实际需要而言,这个误差完全在可以接受的范围内。如果将量程缩小,应用一般工业领域中,所测量的温度范围只有几百度左右,那么精度就会上升,测量的误差将减小。
红外热像仪属于便携式设备,单手操作即可,屏幕分辨率通常为240*320。然而不同的品牌在使用起来差别很大。
比如其使用的光敏元件不同,热灵敏度和分辨率也就不同。以Fluke的红外热像仪为例,其热灵敏度能达到0.045℃。再比如对焦是否快速准确,能否录制测量过程,人机界面是否友好等等。