X
你好,欢迎来到仪多多。请登录 免费注册
仪器交易网
0我的购物车 >
购物车中还没有商品,赶紧选购吧!

一文读懂原子吸收光谱技术 原子吸收光谱常见问题解决方法

时间:2020-07-11    来源:仪多多仪器网    作者:仪多多商城     
   
原子吸收分光光度计(AAS)是元素分析的利器,为了小伙伴们更深入地了解它,小析姐整理了这篇帖子,此帖堪称是原子吸收的入门必读之文,马起来,慢慢看。  
原子吸收技术,也称原子吸收光谱技术。是一种定量分析方法,依据是测元素的基态原子对其特征辐射线的吸收程度,其特点是灵敏度高,重复性和选择性好,操作简单、迅速,结果准确可靠。现已广泛应用于地质、冶金、材料、石油、化工、机械、建材、农、医、环保等各个部门和领域。  
1  
原子吸收光谱技术发展简介  
1955年,澳大利亚的沃尔什就首先提出原子吸收应用于化学分析的见解,并在1960年沃尔什和他的同事们设计和制造出简单的原子吸收光谱仪这标志着世界上第1台原子吸收光谱仪的诞生。  
原子吸收光谱仪虽然问世于澳大利亚,但在这里却没得到真正的发展、进步,随后却在美国的珀金埃尔默公司、日本的岛津和日立得到真正的发展,也正是从这时开始原子吸收分析在元素分析上占有了一席之地。  
近几年原子吸收应用越来越广泛,在许多技术上也得到突破,并且随着其他仪器的发展,给原子吸收与其他技术联用创造了机会,在近几年其他仪器与原子吸收光谱仪开始联用,并在使用过程中取得了喜人的成果,比如FIA-AAS、GC-FAAS、LC-AAS、GC-GFAAS、HPLC-GFAAS等,原子吸收在有机物分析上取得了很大进步,相信,今后原子吸收还会有更大的发展。  
2  
原子吸收光谱技术  
原子吸收光谱法的原理:  
蒸汽中待测元素的气态基态原子会吸收从光源发出的被测元素的特征辐射线,具有一定选择性,由辐射减弱的程度求得样品中被测元素的含量。  
当辐射通过原子蒸汽,且辐射频率等于原子中电子由基态跃迁到较高能态所需要的能量的频率时,原子从入射辐射中吸收能量,产生共振吸收。  
原子吸收光谱是由于电子在原子基态和第1激发态之间跃迁产生的。每一种原子的能级结构均是独特的,故原子有选择性的吸收辐射频率。因此,在所有情况下,均可产生反映该种原子结构特征的原子吸收光谱。  
原子吸收光谱法的特点:  
原子吸收光谱法的优点是具有较高灵敏度和精密度,并具有较好选择性和较强抗干扰能力,另外,在实际应用过程中便于快速操作,分析范围相对较广泛。然而,该方法仍有一些问题存在,需要进一步完善。  
该方法存在问题主要包括在分析多种元素时需要更换灯源;若元素共振线不在真空紫外区内,则无法检测;在测定一些特殊元素时,其灵敏度相对较差;标准曲线范围相对较窄;对于基体较复杂的检测样品,产生的干扰问题仍未能得到较好解决。  
 
如土壤监测中运用流动注射qin化物原子吸收检测河流中所含的沉积物汞和砷,经过试验后,检出砷限为2ng/L,精密度为1.35%至5.07%,准确度在93.5%至106.0%;检出汞限为2ng/L,精密度为0.96%至5.52%,精准度在93.1%至109.5%。这种方法不仅快速、简便,且准确度和精密度非常高,能更好的测试和分析环境样品。  
2、石墨炉原子吸收光谱法  
石墨炉原子吸收光谱法是一种用电流加热原子化的分析方法。横向加热石墨炉解决了温度分布不均匀的问题。  
石墨炉原子化的出现非常之重要,对于火焰原子化有着较为明显的优越性,与火焰原子化技术对比,灵敏度提高到3到4个数量线,达到了10-12至10-14g的灵敏度,但是石墨炉原子吸收光谱法还是存在一定的局限性:重现性还没有火焰法高,当待测样品比较复杂时,产生的结果会有很大的误差。  
3、火焰原子吸收光谱法  
目前,火焰原子吸收光谱法还是应用广泛的方法。因为其对大多数的元素都适用,而且具有速度快,成本低,操作简单,结果误差不大的优势。  
在实验室中,大多采用空气-乙炔火焰,温度约为2300摄氏度,并不能完全融化所有元素,所以在后续的实验中将空气改为了预混合氧,提高氧气的含量来使火焰温度升高。再后来有人提出火焰改为氧化亚氮-乙炔,这种火焰zui高温度可达3000摄氏度,能有效解决大多数难融元素的问题。  
3  
原子吸收光谱技术的优点  
1、操作简单、便捷  
与分光光度的分析方法相比,原子吸收仪分析有许多相似之处,二者的工作原理以及操作仪器的结构基本相同。站在长期从事化学分析工作的人员的角度来看,这种分析技术的操作相对简单、便捷,其操作要领易于掌握,无需专门的培训就可以直接投入使用。  
2、原子吸收仪具有较强的抗干扰能力  
由于在分析工作中存在诸多干扰因素,例如物力干扰、化学干扰、电离干扰以及环境干扰等,使得分析工作的准确性受到了一定程度的影响。而原子吸收仪技术具有较强的抗干扰能力,能够有效避免这些干扰。  
在各种干扰的情况之下,操作人员可以采取改变火焰温度、或者保护络合剂等受到使干扰得以减少。玻尔兹曼的方程式提出,一旦火焰温度出现变化,那么发射光谱的谱线也会随着发生更到的变化,然而原子吸收分析不会受到火焰温度变化太大的影响,由此可见,原子吸收仪的抗干扰能力是比较强的。  
3、具有较高的灵敏度  
通常情况下,火焰原子的方法是在高温条件下在雾化室中送入待测物品的样品,这个操作过程相对比较简单,具有较好的重现性。现阶段,许多元素的灵敏度较高,基本都达到了PPM级,而少部分元素的灵敏度达到了PPB级。  
石墨炉原子化器,能够在石墨管壁、石墨平台或者石墨坩埚放置样品,然后利用加热来实现原子化。在可控温度的范围的原子效率,能够达到100%的样品使用率。  
4、工作效率高  
目前,全自动的分析光谱仪器在市场上已经得到了一定的应用,该仪器的操作完全实现了微机自动化。操作人员只需要根据实际情况,对机器的操作参数进行设置,对各项数值进行调节,例如燃烧头的高度、气体流量以及助燃比等。  
如此以来,不仅减少了工作量,节省了财力与人力,分析时间也得以降低,工作效率得到有效提高,同时由于人工失误而造成的误差也得到zui大程度的降低。  
4  
原子吸收光谱技术应用  
1、在金属材料中的分析应用  
在对一些金属材料例如铝、铝合金、铜合金、钛合金等等,一些电源材料例如银锌电池、铬镍电池、热电池、太阳电池等,这些材料运用原子吸收光谱仪的技术方法所测的实验数据普遍具有较高的准确度,实现了实验条件的优化与完善。  
2、在粉末材料中的分析应用  
在分析与测试微量与常量的各种混合粉末电源材料时原子吸收光谱技术的应用十分广泛,其中还包括了控制与分析不同中间产物以及zui终产品添加剂及杂质含量的内容。以日本某公司制造的AA-670型原子吸收光谱仪为例,其具有很高的准确性,在银粉中能够回收大约97%的铜铁。  
3、在液体材料中的分析应用  
分析与测定电解液、电镀液、浸渍液以及其他不同类型的溶液金属离子含量即液体材料溶液分析的工作内容。  
一般大部分待测金属离子都是存在于溶液之中,因此,采用的检测方法必须具有较高的灵敏度。一旦被测浓度超过了测定范围,那么就需要稀释试样溶液,并结合实际情况,加入一定量的稀释液,例如硝酸铜、柠檬酸铵、以及硝酸等等,以此确保在溶液材料分析中原子光谱吸收仪的应用得以优化,进而使得到的结果更加真实准确。  
4、在化学试剂中的分析应用  
在化学试剂的分析中,原子吸收仪也有着广泛的应用。例如有的部门将一种TH-2005红外吸收法二氧化碳分析仪用于环境保护、卫生防疫、劳动保护以及科研项目之中。  
这种分析仪的组成部分主要有采样装置、流程控制装置、二氧化碳光学检测室以及微机检测、控制、分析系统。  
此外,美国某公司制造的M-5型原子吸收光谱仪在化学试剂的微量与常量元素分析中也有着广泛的应用,在化学试剂中学多溶液的杂质含量的相对标准偏差较小,一般在0.5%左右,可见其具有较高的准确性。  
5、在医学方面中分析应用  
原子吸收光谱技术强大的功能使得其在化学分析中的各个领域都有着广泛的应用,其中医学方面的应用尤为突出,甚至能够实现对一些含量在PPM或PPB级的微量元素的准确检测,目前,我国各级医保单位中的常规项目已经纳入了人体元素检测,并且具有精确可靠的检测结果。由此可见,在疾病控制中心原子吸收光谱技术也发挥着十分重要的作用。

原子吸收光谱分析中减小校正曲线弯曲的方法

  标准取消的形状与所用空心阴极灯的特性,火焰的均匀性、单色器的分辨率以及狭缝宽度等许多因素有关。火焰中原子浓度不均匀也导致标准曲线弯曲。还有其他原因,例如,溶液浓度变化大时,溶液的黏度随着浓度增加而增加,溶质的实际喷雾量减少,也导致标准曲线弯曲,但这个原因不太重要。  在原子吸收光谱仪分析中,由于存在多种谱线变宽的因素,例如自然变宽,多普勒变宽,同位素效应,罗兰兹变宽,场变宽,自吸和自蚀变宽等,引起了发射线和吸收线变宽,尤以发射线变宽影响最大。  减小校正曲线弯曲的几点措施:  1、选择性能好的空心阴极灯,减少发射线变宽。  2、灯电流不要过高,减少自吸变宽。  3、分析元素的浓度不要过高。  4、对准发射光,使其从吸收层中央穿过。  5、工作时间不要太长,避免光电倍增管疲劳和空心阴极灯过热。  6、助燃气体压力不要过高,可减少压力变宽。

标签: 原子吸收光谱
原子吸收光谱 原子吸收光谱分析中减小校正曲线弯曲的方法_原子吸收光谱
  原子吸收光谱法又称分光光谱法,这种方法基于待测元素的基态原子蒸汽对其特征谱线的吸收,及特征谱线因此出现的特征性和谱线被减弱程度对待测元素进行分析。具有准确度高、选择性好、分析速度快、应用范围广等优点。但在实际实验过程中,影响测量条件的可变因素多,想要仪器有更好的检测效果,在实验条件选择上很重要。
 
  1.吸收波长(分析线)的选择
 
  一般选用共振吸收线为分析线,测量高含量元素时,可选用灵敏度较低的非共振线为分析线。如测Zn时常选用灵敏线213.9nm波长,但当Zn的含量高时,为保证工作曲线的线性范围,可改用次灵敏线307.5nm波长进行测量。As,Se等共振吸收线位于200nm以下的远紫外区,火焰组分对其明显吸收,故用火焰原子吸收法测定这些元素时,不宜选用共振吸收线为分析线。测Hg时由于共振线184.9nm会被空气强烈吸收,只能改用此灵敏线253.7nm测定。
 
  2.狭缝宽度的选择
 
  狭缝宽度影响光谱通带宽度与检测器接受的能量。调节不同的狭缝宽度,测定吸光度随狭缝宽度而变化,当有其它谱线或非吸收光进入光谱通带时,吸光度将立即减少。应选取得不引起吸光度减少的狭缝宽度。对于谱线简单的元素,如碱金属、碱土金属可采用较宽的狭缝以减少灯电流和光电倍增管高压来提高信噪比,增加稳定性。对谱线复杂的元素如铁、钴、镍等,需选择较小的狭缝,防止非吸收线进入检测器,来提高灵敏度,改善标准曲线的线性关系。
 
  3.燃烧器的高度及与光轴的角度
 
  锐线光源的光束通过火焰的不同部位时对测定的灵敏度和稳定性有一定影响,为保证测定的灵敏度高应使光源发出的锐线光通过火焰中基态原子密度峰值的“中间薄层区”。这个区的火焰比较稳定,干扰也少,约位于燃烧器狭缝口上方20mm-30mm附近。通过实验来选择适当的燃烧器高度,方法是用一固定浓度的溶液喷雾,再缓缓上下移动燃烧器直到吸光度达峰值,此时的位置即为合适的燃烧器高度。当欲测试样浓度高时,可转动燃烧器至适当角度以减少吸收的长度来降低灵敏度。
 
  4.空心阴极灯工作条件的选择
 
  预热时间:灯点燃后,由于阴极受热蒸发产生原子蒸汽,其辐射的锐线光经过灯内原子蒸汽再由石英窗射出。使用时为使发射的共振线稳定,必须对灯进行预热,以使灯内原子蒸汽层的分布及蒸汽厚度恒定,这样会使灯内原子蒸汽产生的自吸收和发射的共振线的强度稳定。通常对于单光束仪器,灯预热时间应在30分钟以上,才能达到辐射的锐性光稳定。对双光束仪器,由于参比光束和测量光束的强度同时变化,其比值恒定,能使基线很快稳定。空心阴极灯使用前,若在施加1/3工作电流的情况下预热0.5-1.0h,并定期活化,可增加使用寿命。
 
  5.测器光电倍增管工作条件的选择
 
  日常分析中光电倍增管的工作电压一定选择在工作电压峰值的1/3-2/3范围内。增加付高压能提高灵敏度,噪音增大,稳定性差;降低负高压,会使灵敏度降低,提高信噪比,改善测定的稳定性,并能延长光电倍增管的使用寿命。
 
  6.火焰燃烧器操作条件的选择
 
  进样量:选择可调进样量雾化器,可根据样品的黏度选择进样量,提高测量的灵敏度。进样量小,吸收信号弱,不便于测量;进样量过大,在火焰原子化法中,对火焰产生冷却效应,在石墨炉原子化法中,会增加除残的困难。在实际工作中,应测定吸光度随进样量的变化,达到满意的吸光度的进样量,即为应选择的进样量。


上一篇:气相色谱仪的优点可应对各种需求...

下一篇:2021全站仪快速架设技巧,详...

  • 手机多多
  • 官方微信订阅号
商品已成功加入购物车!