浪涌保护器,也叫防雷器,是一种为各种电子设备、仪器仪表、通讯线路提供安全防护的电子装置。当电气回路或者通信线路中因为外界的干扰突然产生尖峰电流或者电压时,浪涌保护器能在极短的时间内导通分流,从而避免浪涌对回路中其他设备的损害。
浪涌保护器,适用于交流50/60HZ,额定电压220V/380V的供电系统中,对间接雷电和直接雷电影响或其他瞬时过压的电涌进行保护,适用于家庭住宅、第三产业以及工业领域电涌保护的要求。
原始的电涌保护器羊角形间隙,出现于19世纪末期,用于架空输电线路,防止雷击损坏设备绝缘而造成停电。20世纪20年代,出现了铝浪涌保护器,氧化膜浪涌保护器和丸式浪涌保护器。30年代出现了管式浪涌保护器。50年代出现了碳化硅防雷器。70年代又出现了金属氧化物浪涌保护器。现代高压浪涌保护器,不仅用于限制电力系统中因雷电引起的过电压,也用于限制因系统操作产生的过电压。1992年以来,以德、法为代表的工控标准35mm导轨卡接式可拔插SPD防雷模块,开始大规模引进到中国,稍后以美、英为代表的一体化箱式电源防雷组合也进入了中国。
1.保护通流量大,残压极低,响应时间快;
2.采用灭弧技术,彻底避免火灾;
3.采用温控保护电路,内置热保护;
4.带有电源状态指示,指示浪涌保护器工作状态;
5.结构严谨,工作稳定可靠。
浪涌保护器(Surge protection Device)是电子设备雷电防护中
不可缺少的一种装置,过去常称为
“避雷器”或“过电压保护器”英文简写为SPD.浪涌保护器的作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击而损坏。
浪涌保护器的类型和结构按不同的用途有所不同,但它至少应包含一个非线性电压限制元件。用于浪涌保护器的基本元器件有:放电间隙、充气放电管、压敏电阻、抑制二极管和扼流线圈等。
浪涌也叫突波,顾名思义就是超出正常工作电压的瞬间过电压。本质上讲,浪涌是发生在仅仅几百万分之一秒时间内的一种剧烈脉冲,可能引起浪涌的原因有:重型设备、短路、电源切换或大型发动机。而含有浪涌阻绝装置的产品可以有效地吸收突发的巨大能量,以保护连接设备免于受损。
分类
SPD是电子设备雷电防护中不可缺少的一种装置,其作用是把窜入电力线、信号传输线的瞬时过电压限制在设备或系统所能承受的电压范围内,或将强大的雷电流泄流入地,保护被保护的设备或系统不受冲击。
按工作原理分
按其工作原理分类,SPD可以分为电压开关型、限压型及组合型。
⑴电压开关型SPD。在没有瞬时过电压时呈现高阻抗,一旦响应雷电瞬时过电压,其阻抗就突变为低阻抗,允许雷电流通过,也被称为“短路开关型SPD”。
⑵限压型SPD。当没有瞬时过电压时,为高阻抗,但随电涌电流和电压的增加,其阻抗会不断减小,其电流电压特性为强烈非线性,有时被称为“钳压型SPD”。
⑶组合型SPD。由电压开关型组件和限压型组件组合而成,可以显示为电压开关型或限压型或两者兼有的特性,这决定于所加电压的特性。
按用途分
1.电源线路SPD
由于雷击的能量是非常巨大的,需要通过分级泄放的方法,将雷击能量逐步泄放到大地。在直击雷非防护区(LPZ0A)或在直击雷防护区(LPZ0B)与第yi区(LPZ1)交界处,安装通过Ⅰ级分类试验的浪涌保护器或限压型浪涌保护器作为第yi保护,对直击雷电流进行泄放,或者当电源传输线路遭受直接雷击时,将传导的巨大能量进行泄放。在第yi防护区之后的各分区(包含LPZ1区)交界处安装限压型浪涌保护器,作为二、三级或更高等级保护。第二级保护器是针对前级保护器的残余电压以及区内感应雷击的防护设备,在前级发生较大雷击能量吸收时,仍有一部分对设备或第三级保护器而言是相当巨大的能量,会传导过来,需要第二级保护器进一步吸收。同时,经过第yi级防雷器的传输线路也会感应雷击电磁脉冲辐射。当线路足够长时,感应雷的能量就变得足够大,需要第二级保护器进一步对雷击能量实施泄放。第三级保护器对通过第二级保护器的残余雷击能量进行保护。根据被保护设备的耐压等级,假如两级防雷就可以做到限制电压低于设备的耐压水平,就只需要做两级保护;假如设备的耐压水平较低,可能需要四级甚至更多级的保护。
选择SPD,首先需要了解一些参数及其工作原理。
⑴ 10/350μs波是模拟直击雷的波形,波形能量大; 8/20μs波是模拟雷电感应和雷电传导的波形。
⑵标称放电电流In是指流过SPD、8/20μs电流波的峰值电流。
⑶大放电电流Imax又称为大通流量,指使用8/20μs电流波冲击SPD一次能承受的大放电电流。
⑷大持续耐压Uc(rms)指可连续施加在SPD上的大交流电压有效值或直流电压。
⑸残压Ur指在额定放电电流In下的残压值。
⑹保护电压Up表征SPD限制接线端子间的电压特性参数,其值可从优选值的列表中选取,应大于限制电压的zui高值。
⑺电压开关型SPD主要泄放的是10/350μs电流波,限压型SPD主要泄放的是8/20μs电流波。
2.信号线路SPD
信号线路SPD其实就是信号避雷器,安装在信号传输线路中,一般在设备前端,用来保护后续设备,防止雷电波从信号线路涌入损伤设备。
1)电压保护水平(UP)的选择
UP 值不应超过被保护设备耐冲击电压额定值,UP 要求SPD 与被保护的设备的绝缘应有良好配合。
在低压供配电系统装置中,设备均应具有一定的耐受电涌能力,即耐冲击过电压能力。当无法获得220/380V 三相系统各种设备的耐冲击过电压值时,可按IEC 60664-1 和GB 50057-1994(2000 版)的给定指标选用。
2)标称放电电流In 的(冲击通流容量)选择
流过SPD、8/20 μs 电流波的峰值电流。用于对SPD 做II 级分类试验,也用于对SPD 做I 级和II 级分类试验的预处理。
事实上,In 是SPD 不发生实质性破坏而能通过规定次数(一般为20 次)、规定波形(8/20 μs)的大限度的冲击电流峰值。
3)大放电电流Imax(极限冲击通流容量)的选择
流过SPD、8/20 μs 电流波的峰值电流,用于II 级分类试验。Imax 与In 有许多相同点,他们都是用8/20 μs 电流波的峰值电流对SPD 做II 级分类试验。不同之处也很明显,Imax 只对SPD 做一次冲击试验,试验后SPD 不发生实质性破坏;而In 可以做20次这样的试验,试验后SPD 也不能有实质性破坏。因此,Imax 是冲击的电流极限值,所以大放电电流也称为极限冲击通流容量。显然,Imax>In。
如有疑问请点击:浪涌保护器概述
漏电保护器是保证施工现场用电安全的重要装置,必须正确接线,保持其灵敏可靠。为此,我们将已经发现的保护器错误接线种类,及其可能造成的危险后果整理分析如下,供同行参考和专家批评指正。
一、漏电保护器并联
出现保护器并联的现象,一般有两种情况:一是个别工程用电量大,暂时买不到额定电流与之匹配的保护器;二是大容量的保护器价格高,而使用小容量的保护器并联,费用则相对较低。
后果分析:首先,保护器并联接线时两个保护器的动作电流不可能绝对相等,跳闸的时间就会有先有后,从而导致动作时间延长。其次,在并联接线状态下,当一个保护器失灵时,系统将无法保证安全。当系统漏电时,虽然一个保护器动作了,而失灵的保护器不跳闸,主回路仍然带电,起不到保护作用。另外,由于工作零线混用,会引起误跳闸现象。
二、工作零线断线
这是一种比较危险的现象。当工作零线在侧断线时,保护器的负荷侧零线将会带电。一是因为220V的电源会通过放大器的电源串到零线上使零线带电;二是如果保护器带有单相负荷,电源会通过负载串到零线上,对用电人员造成人身伤害。三是由于零线断线,放大器无工作电源,当回路发生漏电时,无法跳闸。
三、工作零线端子代替相线端子使用
发生这种情况的主要原因,是原来的漏电保护器触头或端子,有一相因负荷过大或接触不良被烧坏,操作人员违章作业将相线接在零线端子上,违章使用。
可能造成的不良后果是:①用电设备将会有一相长期带电(如图3中的C相)。因为工作零线在经过漏电保护器内部时,没有设置断开触点,进出端子是直接联通的。②漏电保护器为220V跳闸电源时,会将放大器烧坏;漏电保护器为380V跳闸电源时,可能会因缺一相电而无法跳闸。两种情况的结果都是使漏电保护器的保护功能失灵。③检修设备时,可能会因有一相电源断不开而出现触电事故。
四、工作零线不接,进出线端子悬空
这种情况多出现在对焊机的漏电保护器上。由于电流很大,把电缆芯线两根并一根,造成芯线数量不够,就把工作零线省了。如果保护器内部放大器用的是相线与工作零线间的电源,不接零就没有220V跳闸电源,漏电保护器不起作用。
五、工作零线接地
四极漏电保护器带有单相荷载时,如果工作零线接地或接设备外壳,工作电流就会有一部分沿着接地点流出,而不经过零序回流。零序互感器会检测出这部分流人接地点的电流,并驱动跳闸机构切断回路电源,这样就造成系统无法正常工作,产生误动作。
六、保护零线当工作零线使用
在正常情况下,保护零线是没有电流通过的(泄漏电流忽略不计)。如果在四极漏电保护器系统中有单相荷载,而且跨接在相线与保护零线之间,单相设备一启动,漏电保护器就会跳闸,系统将无法正常工作。图6中标出的电流方向,单相荷载为“漏电电流”提供了一个通路。
七、保护零线不与变压器中性点连接
“保护零线"PE实际上是保护接地。这种情况常出现在总的漏电保护器前端。当施工现场电源变压器与其他用户共用时,其他用户没有采用TN—S接零保护系统。进入施工现场总配电箱的电缆,在总箱漏电保护器前端,零线应分为两根,其中,一根做保护零线PE,另一根进入总箱漏电保护器,从总箱漏电保护器出来就成为工作零线。按照图7的接线,如果与其他用户共用一个低压系统,就造成了一部分设备采用保护接地,另一部分设备采用保护接零的违章现象,这是《施工现场临时用电安全技术规范》第4.1.3条所明令禁止的。原因是“PE”在漏电保护器的前端没有与零线连接而只做了接地,“PE”是假的。
八、保护器部分输出线与其他线路混用
造成这种情况的主要原因是:非人员乱接电线。分析:(1)保护器输出的相线与非本保护器输出的工作零线组成的单相220V电源,只要有负载电流流过,保护器就会跳闸,造成系统无法正常工作,还会影响到与其相关的保护器。(2)如果负载能工作,说明保护器已经失灵,不起保护作用了。
九、相线缺相不接
对焊机、电焊机电源为两相380V,有一相端子不用就被省略了。当保护器内部工作电源为380V时,就可能有一端正巧接在被省略的电源线上,会造成跳闸回路无工作电源,使保护器失灵。
以上列举的错误接线方法是我们在安全检查中发现的实例,仅有四根进线的保护器,发现的错误接线就达九种之多。相关工作人员在掌握漏电保护器原理和使用方法的同时,应严格按照相关标准和规范要求,对施工临时用电进行监督管理,防止触电事故的发生。
漏电保护器是保证施工现场用电安全的重要装置,必须正确接线,保持其灵敏可靠。为此,我们将已经发现的保护器错误接线种类,及其可能造成的危险后果整理分析如下,供同行参考和专家批评指正。
一、漏电保护器并联
出现保护器并联的现象,一般有两种情况:一是个别工程用电量大,暂时买不到额定电流与之匹配的保护器;二是大容量的保护器价格高,而使用小容量的保护器并联,费用则相对较低。
后果分析:首先,保护器并联接线时两个保护器的动作电流不可能绝对相等,跳闸的时间就会有先有后,从而导致动作时间延长。其次,在并联接线状态下,当一个保护器失灵时,系统将无法保证安全。当系统漏电时,虽然一个保护器动作了,而失灵的保护器不跳闸,主回路仍然带电,起不到保护作用。另外,由于工作零线混用,会引起误跳闸现象。
二、工作零线断线
这是一种比较危险的现象。当工作零线在侧断线时,保护器的负荷侧零线将会带电。一是因为220V的电源会通过放大器的电源串到零线上使零线带电;二是如果保护器带有单相负荷,电源会通过负载串到零线上,对用电人员造成人身伤害。三是由于零线断线,放大器无工作电源,当回路发生漏电时,无法跳闸。
三、工作零线端子代替相线端子使用
发生这种情况的主要原因,是原来的漏电保护器触头或端子,有一相因负荷过大或接触不良被烧坏,操作人员违章作业将相线接在零线端子上,违章使用。
可能造成的不良后果是:①用电设备将会有一相长期带电(如图3中的C相)。因为工作零线在经过漏电保护器内部时,没有设置断开触点,进出端子是直接联通的。②漏电保护器为220V跳闸电源时,会将放大器烧坏;漏电保护器为380V跳闸电源时,可能会因缺一相电而无法跳闸。两种情况的结果都是使漏电保护器的保护功能失灵。③检修设备时,可能会因有一相电源断不开而出现触电事故。
四、工作零线不接,进出线端子悬空
这种情况多出现在对焊机的漏电保护器上。由于电流很大,把电缆芯线两根并一根,造成芯线数量不够,就把工作零线省了。如果保护器内部放大器用的是相线与工作零线间的电源,不接零就没有220V跳闸电源,漏电保护器不起作用。
五、工作零线接地
四极漏电保护器带有单相荷载时,如果工作零线接地或接设备外壳,工作电流就会有一部分沿着接地点流出,而不经过零序回流。零序互感器会检测出这部分流人接地点的电流,并驱动跳闸机构切断回路电源,这样就造成系统无法正常工作,产生误动作。
六、保护零线当工作零线使用
在正常情况下,保护零线是没有电流通过的(泄漏电流忽略不计)。如果在四极漏电保护器系统中有单相荷载,而且跨接在相线与保护零线之间,单相设备一启动,漏电保护器就会跳闸,系统将无法正常工作。图6中标出的电流方向,单相荷载为“漏电电流”提供了一个通路。
七、保护零线不与变压器中性点连接
“保护零线"PE实际上是保护接地。这种情况常出现在总的漏电保护器前端。当施工现场电源变压器与其他用户共用时,其他用户没有采用TN—S接零保护系统。进入施工现场总配电箱的电缆,在总箱漏电保护器前端,零线应分为两根,其中,一根做保护零线PE,另一根进入总箱漏电保护器,从总箱漏电保护器出来就成为工作零线。按照图7的接线,如果与其他用户共用一个低压系统,就造成了一部分设备采用保护接地,另一部分设备采用保护接零的违章现象,这是《施工现场临时用电安全技术规范》第4.1.3条所明令禁止的。原因是“PE”在漏电保护器的前端没有与零线连接而只做了接地,“PE”是假的。
八、保护器部分输出线与其他线路混用
造成这种情况的主要原因是:非人员乱接电线。分析:(1)保护器输出的相线与非本保护器输出的工作零线组成的单相220V电源,只要有负载电流流过,保护器就会跳闸,造成系统无法正常工作,还会影响到与其相关的保护器。(2)如果负载能工作,说明保护器已经失灵,不起保护作用了。
九、相线缺相不接
对焊机、电焊机电源为两相380V,有一相端子不用就被省略了。当保护器内部工作电源为380V时,就可能有一端正巧接在被省略的电源线上,会造成跳闸回路无工作电源,使保护器失灵。
以上列举的错误接线方法是我们在安全检查中发现的实例,仅有四根进线的保护器,发现的错误接线就达九种之多。相关工作人员在掌握漏电保护器原理和使用方法的同时,应严格按照相关标准和规范要求,对施工临时用电进行监督管理,防止触电事故的发生。