1.涂料流变性的测量
涂料的流变性是指其在外力作用下的流动和变形性。流变性和涂料配方的稳定性、实用性密切相关。在一个涂料配方中,树脂、颜料和溶剂的组合本身并没有优化的效果。因此,绝大多数配方含有流变改进剂,以便使最终产品具有较好的流变性。因此,涂料具有合适的流变性是非常关键的,所以选择正确的流变改性剂组合对于配制这种涂料非常关键。
事实上,所有涂料都具有非牛顿流体的特性,这意味着它们的黏度在所有剪切速率下不相同。通常,水性涂料具有剪切稀释性能,即在较高剪切速率下具有较低黏度。然而,这种黏度的降低并不是永久的,只有在较高剪切速率时才能出现。当剪切速率又变低时,涂料再次显示较高的黏度。为了表示这种剪切变稀的性能,将剪切速率图分成三个区域:即低剪切、中等剪切和高剪切(图1)。从这种三点特征可对流变剂组合的改变对具有各种流变性特征的涂料性能的提高或降低(如抗流挂性和拉刷子)进行有用的评价。
图1 剪切稀释型流体粘度随剪切速率变化曲线
但是在测量流变性时,常规的机械旋转流变仪仅能在低剪切和中等剪切范围内进行有效的测量,因为在较低的剪切速率时流体是层流状态,当剪切速率超过1000s-1后,流体变为湍流状态,从而无法进行有效的测量。当我们比较两个样品的流变性时,只能通过中低剪切速率时的粘度曲线走势,来想象推测高剪切时的粘度,这无疑是非常不科学的。Fluidicam微流控可视流变仪可以测量样品在不同的流速下的粘度,获得完整的流变曲线来反映样品粘度随所施加的剪切速率的变化行为。
Fluidicam微流控可视流变仪比常规的机械旋转流变仪测量更快、更简单、样品消耗量量更少,大大提高流变测试的效率并减少了研究和开发成本。
2.微流控测试技术
微流控(Microfluidics)指的是使用微管道(尺寸为数十到数百微米)处理或操纵微小流体的系统所涉及的科学和技术,是一门涉及化学、流体物理、微电子、新材料、生物学和生物医学工程的新兴交叉学科。微流控的早期概念可以追溯到19世纪70年代采用光刻技术在硅片上制作的气相色谱仪,而后又发展为微流控毛细管电泳仪和微反应器等。微流控的重要特征之一是微尺度环境下具有独特的流体性质始终保持层流特性,利用这一特性可以非常精确地获取样品在超高剪切速率下(最高可达180000s-1)的粘度。
图2 微流控芯片
图3 涂料流动时的界面位置照片
FLUIDICAM使用微流控技术测量样品的粘度,样品和标准液同时被泵入到微流控通道中(尺寸 宽X高 2.2mm X 50 /150µm) 经过强烈的剪切,通过电脑调整样品和标准液泵入的速度即可调整剪切速率。在这个条件下,界面位置仅与样品和标准品液粘度比相关。通过高清摄像机获取层流流体界面的位置,然后软件自动绘制样品在不同剪切速率或温度下的粘度曲线。
3.测试结果
3.1 涂料流变性
不同品牌的涂料A、B1、B2、C。
图4 涂料粘度随剪切速率变化曲线
从数据中可见不同涂料的粘度曲线呈现不同趋势:高质量涂料Brand B2 和 Brand C在低剪切速率下粘度较高更适合悬浮颗粒,并且在高剪切时粘度快速下降,易于涂抹。而Brand A剪切稀释效果不明显,需要调整配方中的流变改性剂。Brand B 1 粘度过高,不易施工涂抹。
3.2 墨水、油墨
陶瓷油墨的粘度是一个非常重要的参数,对不同印刷方法和机器类型必须控制不同粘度。因此,油墨需要调整配方达到目标粘度。油墨的粘度受混合的不同溶剂影响,但其他参数也会影响粘度,如颜料的粒径或其分散的过程(高速/高压/均质机、研磨、超声波等)。在一般情况下,目标是在印刷温度(40-45°)下的粘度约为10-20cp。
图5 墨水粘度随剪切速率变化曲线
不同颜色的陶瓷油墨样品呈现微弱的剪切变稀的行为,蓝色sample3样品具有较高的粘度,橙色sample2粘度较低,三者都在目标粘度范围内。值得一提的是,Fluidicam微流控可视流变仪的实验相对标准偏差仅为1%。测试过程完全密闭,避免了样品蒸发,减少了实验人员的健康损害。
3.3 墨水工艺对高剪切粘度的影响
下图是某厂商提供的墨水样品,采用三种不同的分散工艺:basic基础、MF微乳化、Omega。实际印刷过程中Omega工艺的印刷质量较差,厂商猜测是不同粘度导致的,但是机械旋转流变仪无法提供足够的精度。下图是使用Fluidicam测试的三种不同工艺的两种颜色墨水的粘度。
图6 墨水在高剪切速率下的粘度
从图中可见,Omega工艺制备而成的粘度确实比Basic和MF的粘度稍低,可见Fluidicam具有非常高的精度,可以表征微小的粘度差异。
4、结论
1.涂料粘度必须考虑平衡性,既要足够低,以便具有较好的流动和流平性,方便施工,但又不能太低,以防发生流挂,或包装储运时发生颜料沉积。测试涂料在不同剪切速率下的流变性是非常重要的。
2.微流控流变是一种非常新颖的流变性测试技术,Fluidicam微流控可视流变仪具有高剪切频率范围、精确、快速、简单、样品消耗量小的优点,是一款非常先进的流变性测试工具。
微流控可视流变仪FLUIDICAM
Fluidicam微流控可视流变仪被设计用于测试各种稠度样品的粘度,包括液体、凝胶或半固体乳液。当样品和参比样在芯片通道中高速流动时,获取微型芯片中两相不相容液体的界面位置,从而计算被测样品的剪切速率和粘度。芯片上狭窄的通道,赋予仪器高的剪切速率范围、样品体积量小,温度调节迅速的优点。
将流变仪应用于高分子物理实验教学,可以使学生加深对高分子物理理论课中聚合物粘弹性与流变性能的理解。简要介绍了旋转流变仪的基本原理和主要检测功能,并通过一些实例阐述了旋转流变仪在高分子物理实验教学中的具体应用。该实验的设置可以使学生通过实验巩固高分子物理知识,分析流变实验中体现的具体的高分子物理问题,更好地理解与掌握高分子科学的基本理论。
高分子物理是高分子材料相关专业的本科必修专业基础课,主要研究聚合物的结构-性能-分子运动之间的关系。通过开设高分子物理实验,一方面可以使学生增加感性认识,加深对课堂理论知识的理解,另一方面可以使学生掌握聚合物结构和性能测定的基本方法,培养学生的实验技能。
聚合物流变性能测试是观察高分子材料内部结构的窗口,不仅可以认识聚合物的结构与性能的关系,还能简便地进行高分子材料的质量检测和质量控制,从而对其加工成型过程提供理论指导。旋转流变仪是研究高分子材料流变性能重要的流变学测试系统,它不仅可以测量聚合物流体的粘度,还能在较宽的频率、温度范围内研究聚合物的动态粘弹性,从而揭示聚合物体系内在的结构-性能-分子运动之间的关系。
流变仪即用于测定聚合物熔体、聚合物溶液、悬浮液、乳液、涂料、油墨和食品等流变性质的仪器。