1、什么是编码器?
编码器是把角位移或直线位移转换成电信号的一种装置。前者称为码盘,后者称码尺.
按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,电刷接触导电区或绝缘区来表示代码的状态是“1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是“1”还是“0”。
按照工作原理编码器可分为增量式和式两类。增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。
2、测量精度的定义
大家知道,所有的测量都是对"真实"值的大致估计,也就是说测量的数值总是和"真实"值有一定的误差,那么这样一个误差的大小就是通常所说的测量精度,它反映了测量仪器系统所能真实还原测量信号值的能力。
3、增量编码器的精度
增量式光电编码器的精度与分辨率完全无关,这是两个不同的概念。精度是一种度量在所选定的分辨率范围内,确定任一脉冲相对另一脉冲位置的能力。精度通常用角度、角分或角秒来表示。编码器的精度与码盘透光缝隙的加工质量、码盘的机械旋转情况的制造精度因素有关,也与安装技术有关。
4、增量编码器的分辨率
光电编码器的分辨率是以编码器轴转动一周所产生的输出信号基本周期数来表示的,即脉冲数/转(PPR)。码盘上的透光缝隙的数目就等于编码器的分辨率,码盘上刻的缝隙越多,编码器的分辨率就越高。在工业电气传动中,根据不同的应用对象,可选择分辨率通常在500-6000PPR的增量式光电编码器,高可以达到几万PPR。交流伺服电机控制系统中通常选用分辨率为2500PPR的编码器。此外对光电转换信号进行逻辑处理,可以得到2倍频或4倍频的脉冲信号,从而进一步提高分辨率。
5、值编码器精度跟分辨率由何关系?
单圈值编码器的位数代表码盘的码道数,因为是用二进制的码盘(格雷码相同),所以他的精度就成了2的几次方,比如12位,就是2的12次方也就是4096。
编码器的分辨率与精度并不一定相当,精度随刻线、码盘机械同心度、读数响应速度、温度特性等各种因数决定。如果一个编码器是用刻线正弦波细分获得高分辨率的,那它的精度并没有提高,细分仅提高了分辨率。在细分前的刻线精度是多少,细分后的精度还是多少,所以有些高分辨率的编码器的精度取决于之前是用多少线再细分的。
6、实心轴编码器和空心轴编码器之间有何区别?
实心轴编码器需要安装法兰和联轴器。空心轴编码器只需要一个弹huang片,用来防止编码器的旋转和吸收振动。
7、什么是差分线路驱动器输出(Differential Line DriverOutput)?
差分输出提到这样一个事实,即每个通道有一个互补通道,如A和/A。差分线路驱动器可以帮助提高抗噪声性能(见/A和/B通道用于什么?)。差分线路驱动器还允许您比推挽输出更多的漏或源电流。差分线路驱动器同时有漏和源电路一起工作。(见什么是漏或源输入?)它也可以帮助提高信号的传输距离。
8、什么是集电极开路输出(Open Collector Output)?
一个集电极开路输出是一个NPN晶体管。NPN晶体管允许漏电流到公共端。它可以被认为是一个开关,允许电路经过负荷后被连接到共同端。这意味着如果要有输出工作需要一个电源。电源经过负荷必须被连接到输出,否则NPN晶体管只是建立了一个到公共端的路径,即干式接点。因此,如果您测量一个没有连接到任何电源的集电极开路输出电压,不会看到电压的改变。如果集电极开路正常工作,经过输出负载后电压应该被检测到。
9、什么是图腾柱输出(Totem Pole output)?
图腾柱输出基本上和推挽输出一样,但当提到了TTL装置时,它是一个常用的术语。它和推挽输出之间的主要差别是漏或源电流的大小。图腾柱输出比推挽输出的漏/源电流要小。其他主要区别在于输出电压不同。图腾柱只能是一个5V直流信号,而推挽输出将跟随输入电压。
10、什么是推挽输出(Push Pull Output)?
推挽输出是一种允许你同时连接漏或源电路的输出。(见什么是漏或源输入?)这种类型的输出允许你比图腾柱输出更多的电流和跟随输入电压。当集电极开路输出和编码器连接的控制器不能工作时,需要选择推挽输出。
11、什么是正交输出(Quadrature output)?
正交输出是指信号A和B之间有90度的相移,A超前B或B超前A取决于旋转方向。这并不意味着输出将4倍编码器每圈的分辨率。这一事实,即信号有90度相位差使控制器能够判断编码器的旋转方向。您必须同时使用正交的A和B信号,才能获得X2或X4的逻辑关系。(见正交和x4逻辑之间有何不同?)
12、为什么我需要一个上拉电阻?
上拉电阻被用来“拉”逻辑高电压水平达到工作电压。这是非常有用的,当集电极开路的输出没有达到显示逻辑高电平所需的电压水平或噪音出现在信号线上。当一个逻辑高电平信号出现,对于集电极开路其电压水平约等于工作电压。其中的差值是由于上拉电阻上的电压跌落。如果负载不以地为参考,这并不是必要的。
13、/A和/B通道有什么用?
/A和/B通道是A和B通道的反信号。这意味着当信号A是高电平时,信号/A是低电平,当A是低电平时,/A是高电平。这同样适用于任何有互补信号的情况。这通常使噪音降到低。一些输入卡同时接受的A和/A信号。然后比较两个信号,以帮助消除导线上窜入的共模噪声。接收的脉冲只有信号A是高电平同时信号/A是低电平时,才能被确认。这适用于任何有互补信号的通道,信号A仅作为一个例子。这通常称为差分输出。
14、正交和x4逻辑之间有何不同?
正交输出指的是输出信号的相移。当输出信号,信号A和B互相之间有90度的相差,这被称做正交。这只是正交名词的解释。(见什么是正交输出?)
x4逻辑指控制器如何解释接收的信号。这是通过把每个检测到的A和B通道脉冲的边沿转换为自己的脉冲。这个转换发生在控制器,而不是在编码器。
这意味着如果你订购了一个每转120脉冲的正交编码器,输出信号A和B将有90度的相移。这并不意味着每一转,编码器将产生480个脉冲。增加的脉冲只发生在控制器。
15、如何选择每转脉冲数(PPR)?
当选择编码器的PPR值时,请记住一些简单的规则。请确认你选择的PPR值不会超过控制器或编码器的高频率。尝试选择PPR接近你要显示的值,这样就消除或减少校准常数的必要。例如,如果你想每圈显示12英寸,就选择PPR为12。如果你想显示12.00英寸,选择1200PPR。然而不要错误地忘记了控制器输入的乘数。大多数控制器有X2或X4的逻辑。如果是X2逻辑,当显示12.00将变为您的PPR为600;当X4逻辑时变为PPR为300。这些选择给你期望的每一个单位只有一个脉冲。记住当你你创建的PPR时,一定要记住频率。当选择PPR时,在高转速下不能超过编码器能够处理的频率。相反的情况也是如此,请不要选择过低的PPR,您的控制器不能识别信号。尝试选择您的PPR,让您的校准常数为0.5和1之间。
16、如何设置我的校准常数?
如果正确选择每转脉冲数(PPR)能够简化校准系数。一旦PPR被选定,或者只要按照技术手册中的公式计算。当选择校准常数时,请记住越接近1越好。校准常数的值是您的编码器的每个脉冲的分辨率。
17、编码器和我的系统之间的距离可以多远?
没有固定的答案。许多因素都会起作用,连接装置到一起的大电缆长度。使用长电缆的大问题是电缆变得更容易受到噪音干扰。这是由于电缆的电容,电缆象天线一样起作用,同时通过电缆电源会有损耗。电缆的大距离可以被获得,必须遵循以下一些基本的布线原则。
A 使电缆远离产生大量的电气噪声的物体。这包括交流电机,电弧焊机,交流电源线和变压器。
B 当使用带互补信号时,使用双绞线,当使用任何类型的信号时都要用屏蔽电缆。
C 输出电压使用允许的高电压。例如,如果编码器可以输出5到24伏,那就使用24伏。使用集电极开放或和差分接收器( PM28S00 )一起使用的差分线路驱动器输出,以便得到大的漏/源电流源。
d 如果您使用的是编码器作为不止一个控制器的输入,请使用信号放大器。这也是一个很好的方法,以提高信号传输的距离。
E 当使用差分输入时,典型的差分线路驱动器大距离为大约100英尺,集电极开路的距离大约是35英尺。
18、什么是零速传感器?
零速指示是一个单独的输出,应用中当速度低于一定的频率作为报警,不是零速出现。零速没法检测,只有跌落到一定频率以下可以被检测。当应用至关重要的和必须被监视时,这是非常有用地。
19、需要使用屏蔽电缆吗?
是。强烈推荐使用屏蔽电缆。特别是使用在存在大量的电气噪声的区域。如果你有任何噪声问题,或者怀疑可能有,请使用屏蔽电缆。
20、为什么使用值编码器?
首先,什么是值编码器?值编码器在每圈的每个位置都有wei一的编码。这样代替脉冲的输出,你可以获得二进制特殊值输出。当要求准确的位置时,这是非常有用的。值编码器每圈的每个位置有wei一的二进制值,如果电源关闭,而当电源恢复时位置的实际值能够被识别。即使控制器丢失电源和过程被移动。
21、什么是格雷码?
格雷码是二进制码的一种形式。格雷码和二进制码的不同在于递增数的方法不同。对于格雷码每次递增只有一位变化。这意味着计数的顺序将看到0,1, 3, 2, 6和7。这与标准二进制不同,它的顺序是0, 1, 2, 3, 4和5。
十进制数 | 自然二进制数 | 格雷码 | 十进制数 | 自然二进制数 | 格雷码 |
0 | 0000 | 0000 | 8 | 1000 | 1100 |
1 | 0001 | 0001 | 9 | 1001 | 1101 |
2 | 0010 | 0011 | 10 | 1010 | 1111 |
3 | 0011 | 0010 | 11 | 1011 | 1110 |
4 | 0100 | 0110 | 12 | 1100 | 1010 |
5 | 0101 | 0111 | 13 | 1101 | 1011 |
6 | 0110 | 0101 | 14 | 1110 | 1001 |
7 | 0111 | 0100 | 15 | 1111 | 1000 |
格雷码可以防止在转换到下一状态时产生的错误。下面举一个例子说明在什么情况可能发生。这可能由于定时器和电缆的电容引起。从0011变到0100的情况可能出现0111,而格雷码不会出现这种可能性。
22、什么是漏或源输入?
漏和源输入仅仅涉及晶体管电流的流动。这意味着,他们运转需要电压和负载。漏输入要求在连接它到电路以前需要电压和负载。对于电路,这就是“漏”到地。源输入必须放在电路的负载之前。这意味着这是“源”电流到电路。电压和负载都必须出现在任何一种情况下,以检测输入电压的变化。这同样适用于漏或源输出。
23、线路驱动器7272和4469输出的主要区别是什么?
Line drives线路驱动器
顾名思义,这种输出芯片来源于“驱动”电流到线路。不同于集电极开路输出,线路驱动器芯片主动驱动输出高或低,因此,能够使负载产生漏和源电流(见图2 )。主要优点是它的线路驱动能力,推动更高的电流通过电缆,使电缆运行更长。虽然线路驱动器可用于单端的格式(即推挽输出),它们是常用的互补或差分信号。使用差分信号,当使用屏蔽双绞线电缆,使用较长的电缆运行或在高噪声环境中线路驱动器是shou选。7272 7
7272
或许是广泛认可的线路驱动器之一。该芯片应用于许多竞争力的编码器和充分的理由;7272达到了良好的折衷电流能力,可使用电压范围,以及芯片的成本。典型的电流输出能力的7272芯片是在40-50mA范围,适用于电缆运行在临近的50-75英尺。此外, 7272芯片一般的供应提供了“镜像电压”输出,换句话说,不管输入编码器的电压是多少,同样将输出电压(减去少量考虑到编码器的功率要求)。另一个显着特征是其7272温度保护功能。如果7272被驱动到极限(高负荷,高电压的限制,高频)从而提高了温度,它会进入保护模式下启动“退出”或停止输出。如果让其冷却,该芯片将重启,很像一个热开关,并开始运作了。然而,太多会导致重置阈值或启动点,随着时间的推移降低,终导致编码器不可靠。总之,如果应用程序连续引起这样的停机,应该选择其它不同的线路驱动器。
4469
4469是另一个非常突出的线路驱动器选择。不同于7272 ,4469有高得多的电流驱动能力,取决于不同制造商通常在100mA的范围。这是一个明显的优势,可应用于较长电缆运行,通常是在100-300英尺。然而,这种较高的电流能力,伴随有一个缺点。4469浪费这么多的能量,因此,伴随着高电流电压范围受到影响。一个典型的镜像电压输出于15VDC ,如果选择可调的5伏输出,输入电压可提高到24伏。至于费用方面,4469与7272具有可比性。此外, 4469不具备自动保护功能,它可以倾尽全力地驱动而不用担心停机,但对使用寿命会有明显的不利影响。
24、脉冲轮上的裂口,缺口或刮伤会影响编码器的输出吗?
随损害的严重性和位置而定,这可能会导致脉冲丢失。
如有相关需求请点击:德国堡盟编码器应用常见问题
由于工作的压力,在冲压时可以产生更大的振动,振动的主轴同步编码器信号采集和负压,信号干扰的准确性。冲压的时刻,你必须同步的编码器信号进行平滑处理,添加冲压砂光机砂光编码器设置以下同步控制可以加盖,加盖即时平滑,提高系统的运行稳定性。
同步编码器由于机床主轴轴承的燃油系统的信号精度的压力,您必须监视反馈信号给 PLC,一次异常数据变化,早期预警。通过数据条目界面人机接口,对发动机工作参数进行实时的容易修改。由于电源和 PLC 数据处理的高性能存储的能力提高,模具饲喂程序可以 (即,每个电机的运行时间) 模具保存在系统中,通过更换模具,只是为了调用参数在模具中,根据数据库中的代码更改系统设置,当时间大大缩短。
随着 PLC 扩展总线模块可以无缝地与工厂现场总线满足现代工厂自动化和控制要求。PLCCPU 和运动控制器独立运行。PLCCPU 负责外部信号处理,控制伺服电机运动控制器通过发生。伺服控制系统基于 PLC 系统,PLC 编程用户友好,简单的设计。
编码器由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。
旋转编码器是用来测量转速的装置。它分为单路输出和双路输出两种。技术参数主要有每转脉冲数(几十个到几千个都有),和供电电压等。单路输出是指旋转编码器的输出是一组脉冲,而双路输出的旋转编码器输出两组相位差90度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。
编码器工作原理
是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。把角位移或直线位移转换成电信号,前者称为码盘,后者称为码尺。
按照读出方式可以分为接触式和非接触式两种;按照工作原理可分为增量式和绝对式两类。增量式是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。
绝对式的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。
编码器性能由其参数决定,不同的型号有不同的参数,其性能也有所不同。
1、看编码器输出信号的稳定性:
指编码器在实际运行条件下,保持规定精度的能力。影响其稳定性的原因主要就是温度对电子器件造成的漂移、外界加于编码器的变形力以及光源特性的变化。
2、编码器信号输出形式:
在大多数情况下,直接从编码器的光电检测器件获取的信号电平较低,波形也不规则,还不能适应于控制、信号处理和远距离传输的要求。
3、编码器的响应频率:
其输出的响应频率取决于光电检测器件、电子处理线路的响应速度。当编码器高速旋转时,如果其分辨率很高,那么编码器输出的信号频率将会很高。
4、编码器的分辨率:光电编码器的分辨率是以编码器轴转动一周所产生的输出信号基本周期数来表示的,即脉冲数/转(PPR)。码盘上的透光缝隙的数目就等于编码器的分辨率,码盘上刻的缝隙越多,编码器的分辨率就越高。
5、编码器的精度:
精度是一种度量在所选定的分辨率范围内,确定任一脉冲相对另一脉冲位置的能力。精度通常用角度、角分或角秒来表示,与分辨率没有关系