1
前言
目前市面上商品化的反相色谱柱各式各样,时常让实验人员眼花缭乱,产生幸福的烦恼,很难快速选择合适的色谱柱。通常我们会从键合相类型、键合相在硅胶表面的覆盖率、是否封端、封端类型等方面去选择反相色谱柱。本文从已表征色谱柱的参数,通过量化数值去快速选择合适的反相色谱柱。
2
色谱柱表征体系
色谱柱表征体系通过量化分析色谱柱中影响溶质保留行为的特征,对色谱柱进行分类,从而指导实际工作中色谱柱的选择。有效的色谱柱表征体系应具有以下特点:
(1)考虑了对色谱柱选择性有贡献的所有因素;(2)每一个柱参数表征一种专属的溶质—色谱柱相互作用;(3)能够得到da部分商业柱的色谱柱参数;(4)对于特定色谱柱,不同实验室能够得到 可重现的色谱柱参数;(5)在特定实验条件下测定的色谱柱参数能应用到任何流动相或任何柱温下的分离。
目前国际上比较成熟的色谱柱表征体系有4个,分别是由Snyder、Euerby、Hoogmartens和USP色谱柱工作小组领导完成。其中,由Snyder等基于反相色谱保留机制提出的疏水消除模型,理论基础较坚实,对色谱柱选择性的表征较全面,与其余3个体系的柱参数本质上并无区别,均取自代表性溶质的保留值,参数测定方法简便,实现选择相似或者不同色谱柱的目的。由于USP网站公开常用色谱柱的参数,USP方法表征的色谱参数更方便我们筛选色谱柱。
3
色谱柱表征参数
对于反相色谱柱选择性主要为疏水作用、立体选择性和氢键作用,还有一些二级作用,比如:离子交换、金属螯合作用等。
3.1 USP数据库
疏水作用(Hy):通过同yi流动相体系,在不同的反相色谱柱对进行乙基苯测试,考察乙基苯的保留因子,保留因子越da,色谱柱的疏水作用越强。
立体选择性(TFA):通过同yi流动相体系,在不同的反相色谱柱对进行阿米替林测试,考察阿米替林的拖尾因子,由于阿米替林特殊的立体结构,拖尾因子越小,色谱柱的立体选择性越强,同时硅醇基作用较弱。
金属杂质含量(CTF):色谱柱中会残留少量的金属离子,一般金属离子会与喹啉结构发生螯合作用,导致峰拖尾,故喹啉拖尾因子越da,色谱柱金属杂质含量越da。
氢键作用(CFA):阿米替林是碱性化合物,在酸性或中性条件下呈离子态,保留因子较小,保留主要依靠氢键作用,阿米替林保留因子越da,色谱柱氢键作用越强。
3.2 PQRI数据库
疏水作用(H):通过同yi流流动相体系,在不同的反相色谱柱对进行戊基苯和丁基苯测试,考察乙戊基苯和丁基苯的保留因子之比,比值越da,色谱柱对不同碳链长度化合物的选择性越强,疏水作用越强。
立体选择(S):区分平面结构(三苯乙烯)和空间体积较da 的结构(邻三苯基)的能力。前者与后者保留因子之比体现空间选择性,比值越da,立体选择越强。图示见图1。
氢键作用(A或B):通过同yi流动相体系,在不同的反相色谱柱测试咖fei因和苯酚保留因子比值,数值越da,氢键作用越强。PQRI数据库进一步将氢键能力描述为氢键酸度(A)、非电离硅烷与碱相互作用的能力和氢键碱度(B)、硅胶表面或键合相与酸性分析物的特性进一步相互作用的能力。
离子交换作用(pH2.7或7.0):在流动相pH2.7和7.0下,分别测试苯苄胺和苯酚保留因子之比,比值越da,说明色谱柱区分极性化合物的能力越强。
固定相类型:A——A型硅胶,无定型硅胶,表面残余da 量硅醇基;B——B型硅胶,球形高纯硅胶,目前主流硅胶类型,硅醇基残留少;E——键合相含嵌入极性基团的固定相;phenyl——聚苯乙烯聚合物固定相;F——氟代固定相。
对比USP与PQRI的数据信息,PQRI数据库的色谱柱参数更加全面反应色谱柱的性能。
4
案例
目前色谱柱公司均推出各自方法开发的推荐色谱柱包,比如Waters公司推出经济实惠型的色谱柱包:XBridge C18,XBridge Shield RP18、CORTECS C18+、Xbridge Phenyl和Xselect HSS PFP。通过PQRI数据库检索。
从上表可知:
①疏水作用CORTECS C18+>XBridge C18>XBridge Shield RP18/Xselect HSS PFP>XBridge Phenyl,XBridge Shield RP18的键合相含内嵌极性基团,碳载量相对低,苯基柱和五氟苯基柱比C18柱碳载量低,故H值较低。
②空间选择性,Xselect HSS PFP较为突出,CORTECS C18+低,S值反应硅胶表面键合相的密度。Xselect HSS PFP柱的空间选择性强。
③氢键作用,XBridge Shield RP18和苯基柱突出,XBridge C18低,XBridge Shield RP18内嵌的酰胺基团和苯基与酸性和碱性分析物均有强偶极作用。这两根柱子可以分离强极性化合物。
④离子交换作用,在酸性和中性条件下五氟苯基柱的离子交换能力突出,对苯环不同取代物的相似物质选择性强,CORTECS C18+柱在中性条件下离子交换作用强,其对酸性化合物增强保留,对碱性化合物有较好的峰型。
这四款反相色谱柱,各具特点,在分离不同特点的化合物时具有各自的特长,在方法开发中他们可以互补,可提高柱筛选的效率。
在实际工作中,有好多方法有指定的色谱柱,但我们在研究过程中,会找性能相似的色谱柱作为备选色谱柱。可以通过PQRI数据库查找与目标色谱柱相似的色谱柱,只要F值在3以内,均可尝试。比如方法中规定选用Nucleodur C18 Gravity,一个小众品牌的色谱柱,如果想替代之,可从数据查询与之类似的色谱柱。
从上可知:与Nucleodur C18 Gravity相似的色谱柱很多,有我们熟悉的Waters Cortecs C18、岛津Inertsil ODS-2和Kromasil C18,并且完全替代Nucleodur C18 Gravity使用的概率很高。
5
小结
反相色谱柱表征体系逐渐成熟,并且广泛地用于筛选色谱柱。根据da 多待测物质性质结合色谱柱参数可快速筛选目标色谱柱。但色谱柱表征体系针对特定样品中难分离物质对的分离,还有待细化。对于结构类似待测物的分离只和部分关键色谱柱参数有关。因此,如何更好地研究难分离物质与关键色谱柱参数的关系,并针对品种在液相色谱方法中规定关键柱参数的zui佳范围,还需要研究者的不断探索。
离子色谱柱是离子色谱仪的核心部件之一,样品中各种离子的分离均在色谱柱中完成,并且一般比常规液相色谱柱价格要贵很多。因此,对离子色谱柱的维护保养十分重要。
(1)接离子色谱柱前确保系统已清洗干净。色谱柱在任何情况下不能碰撞、弯曲或强烈震动;很多单位的离子色谱仪是阴、阳离子混用的,因此,接色谱柱前,一定要保证整个离子色谱仪上的所有阀件或管路已清洗干净,避免造成色谱柱堵塞。
(2)确保色谱柱不进入颗粒物。样品一定要经过预处理,去除颗粒物等会给泵和色谱柱带来负担的物质。
(3)确保离子色谱柱不干燥。每天分析工作结束后,要清洗进样阀中残留的样品,还要用适当的溶剂来清洗柱;若分析柱长期不使用,要参照色谱柱保存办法,在冲洗干净后,对阴离子柱要通入一定浓度的碱(对阳离子柱要通入一定浓度的酸),并将色谱柱取下两端密封保存。
(4)确保色谱柱在一定压力、流速条件下运行。仪器使用时一定要先检查整个流动管路中是否有气泡,如果有,需要先将气泡排除后再将色谱柱接上,防止将气泡带到色谱柱中。因为色谱柱中装填的树脂颗粒很小,气泡进入后将影响树脂和样品中离子的交换,同时气泡也将影响基线的稳定性。
色谱柱的柱效能是评价色谱性能的一项重要指标,混合物能否在色谱柱中得到分离,除取决于选择合适的固定相外,还与色谱操作条件及色谱柱的装填状况等因素有关。那么,如何有效地提高色谱柱的柱效呢?
在一定的色谱操作条件下,色谱柱的柱效可用理论塔板数或理论塔板高度来衡量。一般说来塔板数愈多,或塔板高度愈小,色谱柱的分离效能愈好。
如何提高HPLC柱效?
要提高液相色谱的效率可从以下几方面入手。 以下介绍了几种国际上流行的测量和计算柱效值的方法。
1、提高液相色谱柱柱效的方法
要提高液相色谱的效率可从以下几方面入手。
(1)降低移动相的流速,但会使分析时间延长。
(2)减少固定相的量,但色谱柱中样品的负载量也随之减小。
(3)减小固定相的颗粒度,但不能过分,过分后色谱柱的渗透率也会减小。
(4)选用低粘度的移动相,以利于快速传质,但却不利于多组份分析。
(5)适当提高柱温,可降低移动相的粘度,但柱效和分离度也随之降低。
(6)尽量减小停滞移动相的体积,但却加快了移动相的流速。
从以上介绍可看出,在色谱分析过程中,各种因素是互相联系和制约的。只有通过对柱效值的跟踪测算,对自己分析方法不断的研究和实践,才能找到zui佳的工作条件。
2、对柱效值进行跟踪测算应注意的问题
我们也应记住柱效值并不足以预测在所有条件下的柱性能,对大多数色谱工作者来说,柱性能指的是色谱柱用于特定分离的能力,而仅仅有高柱效并不能保证这种分离能力。
不管用什么特定的测试方法,都会有几个参数影响柱效的测定。这些参数包括:洗脱液的成分和粘度及其线流速,测定塔板数所用的溶质,温度,柱长,填料装填方式,颗粒度,还有所选用的测量和计算方法。而测量和计算方法对柱效值的确定起着极大的作用。
3、几种测量和计算柱效值的方法
因为色谱峰是假定样品浓度在移动相和固定相中呈正态分布而得到的样品谱带分布,故常常把色谱峰型看作正态曲线来计算理论塔板数。因此计算柱效(以理论塔板数n为单位)的公式习惯上定义为:
式中:tR为色谱峰的保留时间;
σ2是以时间为单位测量色谱峰的偏差;
a是和峰高(从测峰宽的基线量起)有关的常数,
ωb是峰宽,表示由色谱峰顶点与色谱峰两侧拐点处做切线与峰底基线相交两点间的距离。
假如一个色谱峰真是正态峰型,那么每种计算方法都会得到同样的结果。然而即使一些比较理想的仪器和倾向于得到对称峰型的溶质,由于柱内的槽或空隙,也会出现非正态峰型。所以不同的计算方法将会得到相差较大的n值。通常偏离正态模型的峰型表示为“前延”或“拖尾”。对于这些峰型,越在峰的高处测量,计算的理论塔板数值就越大(准确性越低)。
在许多情况下,色谱工作者需要能反映整个峰型(包括拖尾)的柱效值,同时为了保证定量的重复性,也需要色谱峰很好的对称性。这时对色谱峰非对称性敏感的计算方法适合。如果目的仅仅是要监测色谱柱从次使用到使用寿命结束这一过程中的柱效,那么以上任何一种方法都可以,应选择简便的方法。
如何提高气相色谱柱柱效?
在实际工作中,我们通过对载气流速、进样技术、气化室温度、色谱柱、柱温、检测器温度这六个方面的选择,有效地提高了柱效率,使分析出的色谱峰峰形正常,无峰形扩张、拖尾、峰漏检等不良现象出现,分离度高,从而提高了分析结果的准确性。
所为柱效就是在较短的时间内,用较短的柱子达到满意的分析结果。为了提高色谱柱的柱效率,减少色谱峰扩张、拖尾及峰漏检等现象,在实际工作中,我们从以下六个方面入手,对柱操作条件的选择进行了探讨。
1、载气流速的选择
气相色谱常用的载气是:氢气、氮气、氩气、氦气。
由速率理论可知,载气流速慢有利于传质,有利于组分的分离,但分析时间会加长;如果载气流速快有利于加快分析速度,减少分了扩散,但分离度降低。有时为了缩短分析时间,加大流量,但此时分离效果并不好。可见载气流速的快慢都会降低柱效。
经过长时间的实验,发现对于一般色谱仪而言,载气流量为20-100ml/min。目前我们分析液化气用的是热导检测器,载气用的是氢气,其流量控制是30 ml/min。分析戊烷发泡剂用的是氢火焰离子化检测器,载气用的是氮气、燃烧气氢气和氧气,这三种气体的体积比是氮气:氢气:氧气为1:1:10,分析效果都是较好的。
2、进样技术的选择
在气相色谱分析中,一般采用注射器或六通阀门进样。在考虑进样技术的时候,以注射器进样为主来研究。
进样量:如果在进样过程中进样量大会导致:分离度小;保留值变化难于定性;峰高和峰面积与进样量不成线性关系,不能定量。进样量与气化温度、柱容量和仪器的线性响应范围等因素有关。进样量应控制在瞬间气化,达到规定分离要求和线性响应的允许范围内。填充柱冲洗法的瞬间进样量:液体样品或固体样品溶液一般为0.01~10μl,气体样品一般为0.11~10ml,在定量分析中,应注意进样量读数准确。
注射器里空气的排除:用微量注射器抽取液体样品,只要重复地把液体抽入注射器又迅速把其排回样品瓶,就可以将空气排除。还有一种更好的方法,那就是用计划注射量的约2倍的样品置换注射器3~5次,每次取到样品后,垂直拿起注射器,针尖朝上,留在注射器里的空气都应当跑到针管顶部,推进注射器塞子,空气就会全部被排掉。
保证进样量的准确:用经置换过的注射器取约计划进样量2倍左右的样品,垂直拿起注射器,针尖朝上,让针穿过一层纱布,这样可用纱布吸收从针尖排出的液体。推进注射器塞子,直到读出所需要的数值。用纱布擦干针尖。至此准确的液体体积已经测得,需要再抽若于空气到注射器里。如果不慎推动柱塞,空气可以保护液体使之不被排走。
进样手法:双手拿注射器。用一只手(通常是左手)扶针插入垫片,注射大体积样品(即气体样品)或柱前压力极高时,要防止从气相色谱仪注样器来的压力把注射器活塞弹出(即用右手的大拇指按压住活塞顶部)。让针尖穿过垫片尽可能深的进入进样口,压下注射器活塞停留1秒钟,然后尽可能快而稳地抽出针尖(抽出的同时继续压住注射器活塞)。
进样时间:进样时间长短对柱效率影响很大。若进样时间过长,遇使色谱区域加宽而降低柱效率。因此,对于冲洗法色谱而言,进样时间越短越好,一般必须小于1秒钟。
3、气化室温度的选择
气化室温度取决于样品的化学和热稳定性、沸程范围、进样口类型等。合适的气化室温度即能保持样品瞬间完全气化,又不引起样品分解。温度过低,气化速度比较慢,使峰形不规则,出现平头峰或伸舌峰;温度过高使出峰数目变化,产生前延峰,甚至样品分解。为选择合适的气化室温度,在多次的进样中我们发现,气化室温度比柱温高50-100℃或比样品组分中高沸点高50-70℃较为合适。温度过高过低都会影响柱效。