超声波测厚仪常见问题因素分析
1、测量前应清除被测物体表面所有的灰尘、污垢及锈蚀物,铲除复盖物。过份粗糙的表面会引起测量误差,甚至仪器无读数。
2、测量前应尽量使被测材料表面光滑,可使用磨、抛、锉等方法使其光滑。还可使用高粘度耦合剂。测量圆柱型材料,如管子、油桶等,选择探头轴线与被测材料轴线相交时为理想情况。简单地说,将探头与被测材料耦合,然后围绕被测物轴线转动探头或者垂直于被测物轴线平行移动探头,使探头延迟块的中线与被测物接触,选择稳定的读数,作为材料的准确厚度。
3、对于一些如纤维、多孔、粗粒子的材料,它们会造成超声波的大量散射和能量衰减,以致出现反常的读数甚至无读数,在这种情况下,则说明该材料不适于用此测厚仪测试。对不同材料在不同条件下进行测量,校准试块的材料越接近于被测材料,测量就越。理想的参考试块将是一组被测材料的不同厚度的试块,试块能提供仪器补偿校正因素。
4、材料的厚度与超声波传播速度均受温度的影响,若对测量精度要求较高时,可采用试块对比法,即用相同材料的试块在相同温度条件进行测量,并求得温度补偿系数,用此系数修正被测工件的实测值。
5、对于不同直径的被测物选用不同的延迟块对测量会有帮助的。可以在被测物表面蒙上一块细砂纸,然后前后移动探头,会很容易就把在探头延迟块前端磨出圆弧。为了得到一个令人满意的超声响应,被测材料的另一表面必须与被测面平行或同轴,否则将引起测量误差或根本无读数显示。
6、测厚仪试块的作用:为了满足大精度测量的要求,一套参考试块将是很重要的。在大部分情况下,只要使用一个参考试块就能得到令人满意的测量精度,这个试块应具有与被测材料相同的材质和相近的厚度。取均匀被测材料用千分尺测量后就能作为一个试块。
7、不要测量低于下限厚度的材料。如果一个厚度范围是可以估计的,那么试块的厚度应选上限值。当被测材料较厚时,特别是内部结构较为复杂的合金等,应在一组试块中选择一个接近被测材料的,以便于掌握校准。
非接触式在线激光测厚仪利用激光测距原理实现厚度尺寸的在线检测,该测厚仪的使用为厚度测量带来了便利。非接触式在线激光测厚仪与射线测厚仪相比,具有对人体无害,对环境无污染,与被测物体的材质、温度无关,可以对被测物进行自动化无损测量,精度高,频率大。
非接触式在线激光测厚仪能进行定点测量,即按检验需要定点在离板材上下跳动范围以上的位置,在该任何位置上进行测量;也能根据板材的宽度和测量信号的有无进行扫描测量。为能对板材进行横向覆盖式测量,采用了步进电机控制其测头支架进行往返运动,使测厚仪测头运动实现定位或扫描测量,并且使板材厚度变化曲线与测量点位置运行曲线相对应,便于査找异常现象在带钢上的真实位置。为满足不同规格的产品和不同要求的质量指标检测,可随时调整测量位置或测量方式。
测厚仪测量步骤:
1.测量准备
将探头插入主机探头插座中,按ON键开机,全屏幕显示数秒后显示上次关机前使用的声速。此时可以开始测量。
2.声速的调整
如果当前屏幕显示为厚度值,按VEL键进入声速状态,屏幕将显示当前声速存储单元的内容。每按一次,声速存储单元变化一次,可循环显示五个声速值。如果希望改变当前显示声速单元的内容,用▲或▼键调整到期望值即可,同时将此值存入该单元。
3.校准
在每次更换探头、更换电池之后应进行校准。此步骤对保证测量准确性十分关键。如有必要,可重复多次。将声速调整到5900m/s后按ZERO键,进入校准状态。在随机试块上涂耦合剂,将探头与随机试块耦合,屏幕显示的横线将依次消失,直到屏幕显示4.0mm即校准完毕。将耦合剂涂于被测处,将探头与被测材料耦合即可测量,屏幕将显示被测材料厚度。当探头与被测材料耦合时,显示耦合标志。如果耦合标志闪烁其或不出现说明耦合不好。拿开探头后,厚度值保持,耦合标志消失。
磁感应测量原理:
采用磁感应原理时,利用从测头经过非铁磁覆层而流入铁磁基体的磁通的大小,来测定覆层厚度。也可以测定与之对应的磁阻的大小,来表示其覆层厚度。覆层越厚,则磁阻越大,磁通越小。利用磁感应原理的测厚仪,原则上可以有导磁基体上的非导磁覆层厚度。一般要求基材导磁率在500以上。如果覆层材料也有磁性,则要求与基材的导磁率之差足够大(如钢上镀镍)。当软芯上绕着线圈的测头放在被测样本上时,仪器自动输出测试电流或测试信号。
早期的产品采用指针式表头,测量感应电动势的大小,仪器将该信号放大后来指示覆层厚度。近年来的电路设计引入稳频、锁相、温度补偿等地新技术,利用磁阻来调制测量信号。还采用设计的集成电路,引入微机,使测量精度和重现性有了大幅度的提高(几乎达一个数量级)。现代的磁感应测厚仪,分辨率达到0.1um,允许误差达1%,量程达10mm。
磁性原理测厚仪可应用来精确测量钢铁表面的油漆层,瓷、搪瓷防护层,塑料、橡胶覆层,包括镍铬在内的各种有色金属电镀层,以及化工石油待业的各种防腐涂层。
性能特点:
具有在线实时显示轧制板材的厚度变化、能及时反映“超差提示”等质量信息、帮助实现板材厚度质量指标的功能。
测厚仪有多种运动控制方式,可选择 “计算机控制进退”、“手动控制进退"、“自动扫描”、“定点测量”选项,满足各种测量要求。
整个箱体用采用全铸铁结构,风冷水冷相结合的方式进行冷却防尘,可防止雾气、粉尘、氧化铁皮、油污及高温、热湍流等干扰。
应用效果
由于该测厚仪能实时反映板材厚度变化,便于及时调整轧机,能使厚度尺寸超差等质量问题在生产过程中得到较好控制。采用该激光测厚仪后,可使板材厚度控制精度大幅提高,厚度偏差减少,板材质量提高。
在实际检测工作中,经常碰到超声波测厚仪示值与设计值(或预期值)相比,明显偏大或偏小,原因分析如下: 1、层叠材料、复合(非均质)材料。要测量未经耦合的层叠材料是不可能的,因超声波无法穿透未经耦合的空间,而且不能在复合(非均质)材料中匀速传播。对于由多层材料包扎制成的设备(像尿素高压设备),测厚时要特别注意,超声波测厚仪的示值仅表示与探头接触的那层材料厚度。 2、声速选择错误。测量工件前,根据材料种类预置其声速或根据标准块反测出声速。当用一种材料校正仪器后(常用试块为钢)又去测量另一种材料时,将产生错误的结果。 3、温度的影响。一般固体材料中的声速随其温度升高而降低,有试验数据表明,热态材料每增加100°C,声速下降1%。对于高温在役设备常常碰到这种情况。 4、耦合剂的影响。耦合剂是用来排除探头和被测物体之间的空气,使超声波能有效地穿入工件达到检测目的。如果选择种类或使用方法不当,将造成误差或耦合标志闪烁,无法测量。实际使用中由于耦合剂使用过多,造成探头离开工件时,仪器示值为耦合剂层厚度值。 5、被测物体(如管道)内有沉积物,当沉积物与工件声阻抗相差不大时,超声波测厚仪显示值为壁厚加沉积物厚度。 6、金属表面氧化物或油漆覆盖层的影响。金属表面产生的致密氧化物或油漆防腐层,虽与基体材料结合紧密,无名显界面,但声速在两种物质中的传播速度是不同的,从而造成误差,且随覆盖物厚度不同,误差大小也不同。 7、当材料内部存在缺陷(如夹杂、夹层等)时,显示值约为公称厚度的70%(此时要用超声波探伤仪进一步进行缺陷检测)。 8、应力的影响。在役设备、管道大部分有应力存在,固体材料的应力状况对声速有一定的影响,当应力方向与传播方向一致时,若应力为压应力,则应力作用使工件弹性增加,声速加快;反之,若应力为拉应力,则声速减慢。当应力与波的传播方向不一至时,波动过程中质点振动轨迹受应力干扰,波的传播方向产生偏离。根据资料表明,一般应力增加,声速缓慢增加。