X
你好,欢迎来到仪多多。请登录 免费注册
仪器交易网
0我的购物车 >
购物车中还没有商品,赶紧选购吧!

低价位数字示波器选型指南 数字示波器技术指标

时间:2020-07-29    来源:仪多多仪器网    作者:仪多多商城     
随着数字处理电路和液晶屏的采用, 电子工程师日常使用的数字示波器现在只需1 0 万~25万日元(100日元约合7.6元人民币)就可买到(见图1)。带宽为100MHz~300MHz的数字示波器适合于多种应用,从软件调试到机械控制信号及视频信号的测量等(见图2)。在不同的应用中,它们可以用于进行生产线的pass/fail判定,或是用作现场工程师随身携带的测试设备,甚至还能用在正式的设计开发工作中。


图1 低价位数字示波器


图2低价位示波器适于多种应用

新兴厂商的产品便宜10%

驱动低价位数字示波器市场的是普源精电、固纬电子等活跃在中低端领域的测试测量厂商(见表1)。与示波器行业的两大巨头——安捷伦与泰克的同类产品相比,这些新兴厂商的产品的价格要便宜10%(1万~2万日元)左右。凭借极具竞争力的价格以及不逊于传统测试测量厂商的技术实力,普源精电和固纬电子在市场上均获得了较好的销售实绩:2007年,普源精电数字示波器年出货量达到3万台,在同类产品中位居全球第二;固纬电子则在2008年售出了2万台模拟示波器和3万台数字示波器。

另外,一些在测试测量仪器领域开发经验相对较少的厂商也推出了自己的示波器产品,其中一个有名的低价品牌就是由原本主营中小尺寸液晶屏与小型电视的利利普电子(Lilliput Electronics)公司推出的OWON品牌。该公司带宽100MHz的数字示波器的售价仅为11.8万日元,比普源精电、固纬电子等测试测量厂商的产品更便宜。

基本性能大致相同

一般来说,选择数字示波器时需要考虑的参数主要有三个:带宽、采样率、存储深度。如果单从产品数据手册中列明的技术规格来比较,那么各公司的低价位数字示波器产品之间没有太大差别(见表2)。安捷伦公司电子测量本部市场营销中心市场发展经理佐藤利宏也表示:“低价位数字示波器在基本性能方面几乎没有差别。”

带宽方面,100MHz已成为低价位数字示波器的标准带宽。此外,示波器的带宽至少要达到被测信号频率的5倍。也就是说,带宽100MHz的低价位数字示波器可以测量的信号频率最大约为20MHz。

为了避免混叠现象,示波器的采样率也需要达到被测信号的10倍以上。如果示波器的带宽为100MHz,那么采样率就需要达到200MS/s。本文涉及的数字示波器产品均满足这一要求。

在调试数字信号等应用中,存储深度也是工程师必须关注的性能参数。不同示波器产品的存储深度均有所不同,如利利普电子公司OWON品牌中具有逻辑分析功能的MSO7102T可提供每通道4M点的存储深度。

所需的存储深度取决于要测量的时间。可以是根据采样率,在能够满足测量时间需求的前提下选择具有最大存储深度的产品。如泰克公司TDS2022B的捕获时间为1.25μ s,力科公司WJ312A的捕获时间可达到500μs。

波形质量存在差异

为了进一步了解产品的实际性能,此次,《日经电子》杂志社对安捷伦、泰克、力科、普源精电、固纬电子等5家公司带宽100MHz的低价位数字示波器样机进行了实际的测量比较(见表3)。

首先比较的是频率响应。示波器应该在可测量范围内具有良好的平坦频率响应。此外,示波器的带宽被定义为正弦输入信号的振幅衰减到-3dB时的频率值。因此,对于带宽100MHz的示波器来说,当频率为100MHz时,其显示信号的振幅需大于输入信号的70.7%。


图3虽然均满足要求, 但各产品仍有不同

在实际测量中,输入为振幅60mV的正弦波信号,得到了直至200MHz的频率响应特性。由于5款示波器的额定带宽均为100MHz,所以100MHz时显示信号的振幅只要大于42.4mV即符合标准。实测结果证明5款产品均满足这一需求(见图3)。其中,在1MHz~100MHz频率范围内具有较佳频率响应特性的是泰克公司的TDS2014B,而所有5款产品的频率响应在20MHz以内都具有极好的平坦性。

放大器的性能不同

仔细分析测量结果,还是可以发现产品之间的性能差异。具体来说,信号振幅衰减到-3dB时的频率(即示波器的实际带宽)是不同的。在这一点上,性能较佳的是安捷伦公司的DSO1014A,其实际带宽接近200MHz。上述差异主要是由于放大器性能的不同而造成的。在以下两种情况下进行测量时,放大器的性能将会对测量结果产生影响。

一种情况是测试带宽接近100MHz的信号。如果被测信号的频率超过20MHz(推荐频率),那么在高频下,具有更大实际带宽的数字示波器能够显示出更加准确的波形。

第二种情况是测量矩形波等上升沿很陡的信号。示波器的实际带宽越宽,则越能准确地测量此类信号。在实际测量中,向示波器输入上升沿极陡(700ps)的矩形波,然后使用自动测量功能得到矩形波的上升时间(见图4)。安捷伦的DSO1014A显示信号上升时间为1.80ns,而GDS-1102A的结果则达到3.19ns。需要指出的是,这些测量超出了产品数据手册中标明的推荐应用范围,因此得不到正确值也是正常的。在这5款示波器的产品数据手册中,确保可测量的上升时间的最小值及典型值均为3.5ns。


图4频率特性不同,上升时间也有差异

3.5ns这个数值是根据100MHz的额定带宽推算出来的。基于高斯曲线与一阶RC滤波电路的频率响应特性,示波器的上升时间和带宽的关系式为:上升时间=0.35/带宽(Hz)。通过此次的实际测量可知,不同产品具有不同的实际带宽,所以可以测量的上升时间有可能短于数据手册中标明的额定值。

放大器的允许输入范围也有所不同。放大垂直轴,使得波形超出屏幕(被称为“过驱动”)时,很容易发现这一差异(见图5a)。例如,在开关电源等的开发过程中,研究IGBT等功率半导体的特性时,为了更好的理解器件在导通情况下的损耗,就需要采用过驱动的方法进行测量。如果放大器的允许输入范围不足,放大波形后就会导致放大器饱和或信号失真,于是无法观测到正确的波形。


图5波形的显示能力有差别

数字电路所引起的显示差异

除了放大器等模拟电路部分外,示波器的不同也体现在数字电路部分上。日本一家提供测试测量仪器租赁服务的公司表示:“不同厂商在数字示波器的内部计算方面都具有各自的专业技术,因此,各产品显示波形的准确度也有所不同。”

由于波形更新速度不足时,视频信号很难重现原有波形,因此,从视频信号的显示上很容易就能看出各款产品之间因数字电路的不同而造成的显示差异(见图5b)。

具有超高性能的模拟示波器的波形更新速度可高达100万次/秒,普通模拟示波器的波形更新速度也有数万至数十万次/秒,所以模拟示波器在显示视频信号时一般不会因为波形更新速度不足而出现问题。

数字示波器的波形更新速度则相对较慢。在显示捕获到的数据时,示波器需要通过微处理器和DSP等对数据进行处理,这个处理所需的时间即决定了示波器的波形更新速度。在数字示波器中,某些具备高速处理电路的高价位产品也可以提供数十万次/秒的波形更新速度。

但对于低价位数字示波器产品来说,很多厂商都没有在数据手册中标明产品的波形更新速度。虽然可以通过咨询厂商而得到该数值,但通常只有数十至数千次/秒,不同产品之间还存在不小的偏差(见表2)。如果利用波形更新速度仅为数百次/秒的产品来显示视频信号,通常无法完整显示出原有波形。例如,如果只是显示一张彩色图表,那么波形更新速度只需1000次/秒即可正常显示;但如果要显示模拟视频信号,就需要1万~10万次/秒的波形更新速度。

当需要利用示波器来观测电机等旋转部件中的PWM(脉宽调制)、PAW(脉幅调制)等控制波形时,波形更新速度也非常重要。此次也在100kHz~500kHz的频率范围内对5款低价位数字示波器产品进行了测试,令其显示振幅变化70%的100Hz扫描信号。结果显示,波形更新速度低于几百次/秒的产品无法跟上扫描速度。

除了视频信号和电机控制信号以外,示波器在测量传感器的输出或低速串行信号等时,也需要较高的波形更新速度。有些传感器输出数字信号,会将模拟值转化为数字信号脉冲,如果要对其进行测量,就需要1000次/秒的波形更新速度。而对于输出模拟信号的传感器来说,较低的波形更新速度即可满足需求。

测量I2C与SPI等低速串行信号时,如果要确认数据改变的时序,那么也必须选择波形更新速度为100~1000次/秒的产品。在这种情况下,虽然波形更新速度越高越好,但如果带宽仅为100MHz,那么速度再高也没有太大意义。如果想获得更详细的信息,就应该选用高价位的示波器产品。

厂商的目标应用不同

如上所述,各厂商的低价位数字示波器产品都有所不同,而且,如果像选择模拟示波器一样去选购数字示波器产品,有可能会达不到自己想要的测量效果。不过,低价位数字示波器产品的差别通常只会体现在非常规测量中,在普通应用中基本可以认为它们没有差别。

在示波器走向数字化之后,虽然大部分主要部件都可以选用通用产品,但由于各厂商的目标应用不同,因此在元器件选择、电路设计等其它方面也有差别。在极限测量情况下,波形质量也会不同。

目前的趋势是,主要生产低价位产品的新兴厂商希望能够提供更多的功能及更好的性能,而巨头厂商则希望能够对应用领域进行细分。泰克(日本)公司市场经理柴崎裕士表示:“我们提供用于观测波形的低价位示波器,其功能仅限于观测信号值(电压)、频率、周期等。如果需要进行更多分析,我们则可提供波形更新速度更快、存储深度更大的产品。”安捷伦公司的佐藤利宏也表示:“如果需要测量模拟电视信号,我们推荐波形更新速度高达10万次/秒的高端产品。”

在选择低价位数字示波器时,用户必须充分了解自己的测量需求。低价位示波器的目标应用通常可以分为两类,一类是用于在调试嵌入式软件时观测低速数字信号的波形以确认高电平/低电平时序,另一类是用于取代具有同样带宽的模拟示波器。

对于第一类应用,由于波形质量不太重要,因此只要选择带宽合适的示波器即可。此外,有些数字示波器产品是专门针对这种应用开发的,这些产品没有采用具有较高性能的部件,从而降低了整体成本。厂商还可将节约的部件成本用来扩大存储深度或增加通道,以确保测量时间。对于第二类应用,就像在过驱动测量与视频信号测量的例子中所看到的那样,不是所有产品都具有足够的性能以应对必需的测量要求。
数字示波器产品用途

  数字示波器则是数据采集,A/D转换,软件编程等一系列的技术制造出来的高性能示波器。数字示波器的工作方式是通过模拟转换器(ADC)把被测电压转换为数字信息。数字示波器捕获的是波形的一系列样值,并对样值进行存储,存储限度是判断累计的样值是否能描绘出波形为止,随后,数字示波器重构波形。数字示波器可以分为数字存储示波器(DSO),数字荧光示波器(DPO)和采样示波器。  数字示波器的用途:  1、可以测量直流信号、交流信号的电压幅度  2、可以测量交流信号的周期,并以此换算出交流信号的频率。  3、可显示交流信号的波形。  4、可以用两个通道分别进行信号测量。  5、可以在屏幕上同时显示两个信号的波形,即双踪测量作用。此作用能够测量两个信号之间的差,和波形之间形状的差别。

标签: 数字示波器
数字示波器 数字示波器产品用途_数字示波器 在复杂的嵌入式系统中,通常需要同时监测时域和频域中的多个信号。尽管基带数字信号、射频信号和模拟信号是相互关联和依存的,但是基于传统的调试方法,人们常常无法描述或捕捉它们之间的关系。采用微控制器实现的RF信号反馈控制、低速串行总线、严格的时序关系,以及RF和数字信号之间电磁干扰等都是原型设计阶段令人头痛的问题。

通常可以使用数字示波器分析这些信号所产生的问题,但是大多数开发人员却试图寻找其它的仪器。虽然最终可能完成了工作,但是却花费了大量时间,还需要非常丰富经验。将模拟信号、数字信号和RF信号的测试功能整合在一台仪器中,可以降低对不同设计项目所需要的时间和专家经验。

本文介绍的示波器拥有多个模拟通道(既可用于时域又可用于频域)和数字通道(用于逻辑分析和协议分析)。本文描述如何利用该示波器查看和调试系统中的不同信号,以及共同作用使得该系统可以正常工作的大量关键因素。

对于大量新型设计来说,频域分析是一种关键的调试功能。但是,频域分析必须与时域、数字信号或逻辑通道保持严密的同步。频谱分析对调试工作的价值通常取决于分析速度(更新速度),因此信号的捕捉和发现极富挑战性。此外,仪器还必须具备足够高的频域和时域灵敏度,以便能够捕捉到信号,如因电磁干扰或其它干扰所产生的频域杂散信号等微小信号。为了获得可以用来调试支持多种信号类型的复杂系统的有价值信息,必须基于时间事件、频率事件或数字码型实现精确触发。

快速傅立叶变换

任何信号都是关于时间和幅值的函数。因此,不仅需要捕捉信号幅值,而且还要捕捉信号如何随时间而变化。傅立叶变换是将时域函数变换成频域频谱的主要技术。该变换可以为从某个时域波形中采样的信号给出某个时间点的频谱快照。它使得瞬时频谱可以测量,从而可以测量某个信号在任何时刻的频率分量。据此,可以观察频谱随时间而发生的变化,了解什么时候存在以及什么时候不存在干扰,时域事件和频域事件之间是如何关联的。

在离散傅立叶(DFT)变换中,一定数量时域信号样点被转换成一定数量的频率样点,每一个频率样点都由时域样点通过算法函数计算得出。快速傅立叶(FFT)变换是一种实现离散傅立叶变换的高效方法。该方法类似于离散傅立叶变换,可以将一定数量的离散采样变换至频域。示波器通常利用快速傅立叶变换的采样技术,将时域采样变换至频域。

大多数现代示波器实现的传统快速傅立叶变换方法存在一个限制,尽管人们只对一部分频率范围感兴趣,但是,FFT的计算过程是针对整个采样信息进行的。这种计算方法效率低下,使得整个过程速度较慢。数字下变频(DDC)解决了这一问题,其方法是将目标频带宽度下变频至基带并以较低采样率对其重新采样,实现了在小得多的记录长度上进行快速傅立叶变换。因此,其计算速度更快、更加接近实时性能,也具备更高灵活性。这种灵活性通常可以转变成多域调试应用中所要求的功能。除此之外,由于实际变换是在基带频率上完成的,因此,这种方法还可以实现过采样的优点。这进一步改善了在目标频带宽度上的信噪比。

由于FFT频谱产生于原始的时域信号,因此通过对同一信号进行时间和频率上的分析,可以获得大量的有用信息。某个信号在时域中可能是稳定和正确的,在频域分析时可以发现噪声变大、未知的杂散信号以及其他在时域分析中不易发现的异常事件。在某些示波器上还可以使用时域选通分析功能。借助该功能,可以实现更强大的检测功能。通过选通方式进行 FFT 变换或者限制在某个时间记录的特定位置作FFT,可以在指定的时间点观察傅立叶变换,从而有助于确定产生问题的时间点。获得了干扰信号的周期或频率之后,可以更加准确、快速排除差错或者故障。

最后需要指出的是,不将频谱分析限制在某个特定单一通道上通常也是非常重要的。某些情况下,事件可能影响多个通道的信号,对多个通道同时进行频谱分析可以提供更多的测试信息。如在时间上相互关联的被干扰信号和干扰信号的频谱分析视图可以为问题分析提供有力证据。

动态范围

合适地利用FFT实现信号分析,还必须了解示波器的动态范围。高动态范围、无杂散信号等特点对于正确地进行时域采样并将其转换至频域至关重要。示波器的动态范围不可避免地取决于示波器模数转换器(ADC)的性能及其有效位数(ENOB)。有效位数越多,动态范围越高,信噪比(SNR)越大,精度越好。理想ADC可以将给定电压转换至2K个量化等级之一;其中,对于8位ADC,K为8,其对应的量化等级有256个。然而,ADC存在偏置误差和增益误差、非线性误差和噪声,这些均会影响其动态范围,从而,使得其有效位数由8降至4至7之间的某个值。此外,示波器也不仅仅只包括一个模数转换器,它还有前端放大器和滤波器等,这些组件都会带来噪声,进一步劣化总体ENOB。因此,为了实现可测量动态范围的最大化,必须综合考虑整个信号采样链上的全部组件。

大量示波器采用多个低速ADC的交织采样技术实现高采样率。但是,这种方法会带来交织杂散信号,以及与整个采样系统中速度最低的ADC的采样率相关的频率分量。这些频率分量及其能量进入仪器后,会形成更强、更多的杂散信号,使得针对精确频谱信息的测量更加困难。了解频率信号采样通道的无杂散动态范围,可以有助于获得理想的测量结果。

最后需要指出的是,整体灵敏度或者模拟前端放大器的增益倍数对于频谱分析通道处理小信号(例如,电磁干扰所产生的那些信号)的灵敏度具有决定性作用。一些示波器的设置可以小至1mv/格。但是这些设置可能是基于放大显示而非真正的放大器增益,因此它们可能存在放大误差,并且可能会减小示波器的带宽。为了观察电磁干扰以及其它干扰信号对带宽的可能影响,必须将放大器的增益下调至1mV/格。增益为1mv/格的优质放大器可以提高对微小信号作FFT分析时的观察能力。


图1:采用选通 FFT 的数字示波器和多同步域显示功能的屏幕截图

触发和采样

多域调试和分析的最后一个难点是不同域之间跨域的触发和采集机制。跨时域和频域采取数据的能力对于在设计工作中缩小问题范围是至关重要的。

大量工程师不由自主地倾向于使用传统的时域信号触发。这些触发信号可能包括边沿、窗口、矮脉冲(runt)和其它波形。尽管它们可能很容易设定,但是用于观察跨域问题时,基于它们的触发方式通常缺乏稳定性和可重复性。基于模拟或逻辑通道的触发(例如,码型触发),可以有助于缩小捕获某个异常的范围。串行总线协议触发也可以用于分析例如CRC错误或数据包受损等异常事件。利用这些触发技术可以可靠地在屏幕上重现相应的错误,以进行更加深入的分析。采用频域视图观察受损信号或疑似干扰信号,通常可以找出问题的原因。如果某个时钟信号的设计频率为100MHz,如存在不定期影响该时钟信号谐波频率的突发频率干扰,则可能出现锁存失败或者对系统的其它影响。

最后需要指出的是,采用频域观察,可以更加容易地发现某些影响;而且某些时候这些影响只能通过频域观察才能发现。为了定位某个信号中导致系统出错的、使宽带噪声随机变大的原因,必须使频率模板测试,其工作的方式与大多数常见示波器的时域模板相同。如果某个频域信号进入(干扰)该模板,则示波器可以简单地停止采样,并通过频率、时间回放或者同时进行两者回放以解析事件、找出其根本原因。此外,这些模板也可以设置为精确的dBm条件,用于模拟EMI测试,对于模板违规事件可以做进一步分析。

实时示波器

复杂嵌入式系统通常存在大量的测试和调试问题。这些问题的解决要求高速、高灵敏度地同步进行时域和频域分析。对于该任务,实时示波器平台是一种良好的工具。但是,所选示波器必须拥有合适的硬件电路和相关工具,以完成合适的多域调试。模拟通道FFT不受通道数量的限制,是一种极好的选择。但是,它们必须可以足够快速地进行FFT才能具有可使用性,实现过采样、提高信噪比,以达到相当于谱频分析仪的动态范围。优良的前端、高ENOB的 A/D转换以及大动态范围十分重要,与大增益前端放大器对于小信号测量的重要性类似。跨域触发能力将这些功能或特点结合在一起,为解决问题和设计调试共同提供了一种更快、更简便的方法。

上一篇:谈电磁流量计的选用 流量计技术...

下一篇:冷热冲击试验箱技术参数

  • 手机多多
  • 官方微信订阅号
商品已成功加入购物车!